Toxicity Effect of Carbon Nanotubes

Nano LIFE ◽  
2014 ◽  
Vol 04 (03) ◽  
pp. 1441009 ◽  
Author(s):  
Zhuo Zhao ◽  
Ming Liu ◽  
Xiaochuan Jia ◽  
Hua Wang ◽  
Zhipeng Liu ◽  
...  

Carbon nanotubes (CNT) have been known as one of the most important nanomaterials and their toxicological effects in vivo have been widely concerned. According to "Globally Harmonized System of classification and Labelling of Chemicals" (GHS) classification regulation, here, we analyzed the local toxicity (skin corrosion/irritation), acute oral toxicity, aquatic acute toxicity and reproductive toxicity of single-walled carbon nanotubes (SWCNTs) with the "Organization for Economic Co-operation and Development" (OECD) recommended chemical toxicity standard test methods. The experimental results showed that the LD50 and LC50 of SWCNT are all higher (LC50 more than 5000 mg/kg bw, LC50 more than 100 mg/L), but the skin irritation score is 0.6. As the standard of GHS, that means the SWCNT has no acute oral toxicity and aquatic acute toxicity, but it belongs to skin mild irritation substance. The investigations of reproductive toxicity showed that rate of cell micronuclei formation was significantly increased (p < 0.05) in 10.0 mg/kg dose group, and rate of mice sperm deformity was increased too (p < 0.05) in infected groups indicating that the SWCNT played a potentially role in reproductive toxicity.

Author(s):  
Subaiea Gm ◽  
Aljofan M ◽  
Devadasu Vr ◽  
Alshammari Tm

Objective: Our previous studies indicate that alkaloids could be developed as potential antihepatitis B agents. In the present study, we investigated the in vitro antihepatitis B virus (HBV) activity and in vivo acute oral toxicity of three isoquinoline alkaloids [-(-) Canadine, Corydadine, and Berberine] obtained from Fumaria and Corydalis species. The compounds were selected based on their therapeutic indexes calculated previously in vitro.Methods: The antiviral activity and cytotoxicity of selected isoquinoline alkaloids were evaluated in vitro in HepG2 cells. In vivo, acute oral toxicity was performed in female mice following the Organization for Economic Cooperation and Development test guideline-423 (acute toxicity class method).Results: The selected agents have shown high antiviral activity against HBV and low cytotoxicity in vitro. The results obtained from an acute oral toxicity study revealed that the LD50 of all the test compounds was >2000 mg/kg when administered orally to mice. All the tested compounds fall under the category 5 (unclassified) according to the Globally Harmonized System, with a LD50 value >2000 mg/kg when orally administered to mice.Conclusion: The results of the study revealed that OR-13 and MNAD can be studied further and can be developed as antihepatitis B drugs.


2020 ◽  
pp. 31-32
Author(s):  
Mikhail A. Levchenko ◽  
◽  
Natalia A. Sennikova ◽  

Toxicological assessment is a mandatory research step in the development of new insecticidal drugs. At the All-Russian Research Institute of Veterinary Entomology and Arachnology, a prototype of the insecticidal bait Mukhnet IF was obtained with an active ingredient content of 0.06% ivermectin and 0.015% fipronil, which showed a highly effective effect against houseflies. This work presents the results of the study of acute oral toxicity of the above agent. For this, male white mice with a live weight of 16-26 g were selected. They were kept on a starvation diet for one day in individual houses with water. The drug was given in mg/kg body weight the next day. A total of 33 doses have been tested, ranging from 100 mg/kg to 40,000 mg/kg. The animals were observed for 14 days. According to the research results, it was revealed that at doses up to 20,000 mg/kg there were no signs of intoxication, but when tested at 25,000 mg/kg in some mice, these signs were noted, and at 30,000, 35,000 and 40,000 mg/kg deaths were recorded 20±10, 45±30 and 60±20%, respectively. It was not possible to test the drug over the last above dose due to incomplete eaten by mice. According to the degree of danger for warm-blooded animals, the drug belongs to the 4th class of low-hazard drugs (average lethal dose of 5000 mg/kg or more) in accordance with the classification of GOST 12.1.007-76. When analyzing the literature data on the toxicological characteristics of preparations containing ivermectin and chlorfenapyr, it was revealed that the insecticidal agent in its acute toxicity for warm-blooded animals is comparable to known analogues.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1294
Author(s):  
Samuel Álvarez-Almazán ◽  
Gabriel Navarrete-Vázquez ◽  
Itzia Irene Padilla-Martínez ◽  
José Correa-Basurto ◽  
Diana Alemán-González-Duhart ◽  
...  

By activating PPAR-γ, thiazolidinediones normalize glucose levels in animal models of type 2 diabetes and in patients with this pathology. The aim of the present study was to analyze 219 new derivatives in silico and select the best for synthesis, to be evaluated for acute oral toxicity in female rats and for control of diabetes-related parameters in a rat model of streptozotocin-induced diabetes. The best compound was chosen based on pharmacokinetic, pharmacodynamic, and toxicological parameters obtained in silico and binding orientation observed by docking simulations on PPAR-γ. Compound 1G was synthesized by a quick and easy Knoevenagel condensation. Acute oral toxicity was found at a dose greater than 2000 mg/Kg. Compound 1G apparently produces therapeutic effects similar to those of pioglitazone, decreasing glycaemia and triglyceride levels in diabetic animals, without liver damage. Moreover, it did not cause a significant weight gain and tended to reduce polydipsia and polyphagia, while diminishing systemic inflammation related to TNF-α and IL-6. It lowered the level of endogenous antioxidant molecules such as reduced glutathione and glutathione reductase. In conclusion, 1G may be a candidate for further testing as an euglycemic agent capable of preventing the complications of diabetes.


2020 ◽  
Vol 133 ◽  
pp. 91-97
Author(s):  
Meriama Belghoul ◽  
Abderrahmane Baghiani ◽  
Seddik Khennouf ◽  
Lekhmici Arrar

2018 ◽  
Vol 12 (26) ◽  
pp. 389-396 ◽  
Author(s):  
Mengiste Berhan ◽  
Dires Kassahun ◽  
Lulekal Ermias ◽  
Arayaselassie Mahlet ◽  
Zenebe Tizazu ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4528 ◽  
Author(s):  
Abdelfattah EL Moussaoui ◽  
Mohammed Bourhia ◽  
Fatima Zahra Jawhari ◽  
Hamza Mechchate ◽  
Meryem Slighoua ◽  
...  

Withania frutescens (W. frutescens) is a medicinal plant widely used to treat several diseases. This work aims to study phytochemical composition as well as acute and subacute toxicity of W. frutescens hydroethanolic extract in mice. The phytochemical composition of W. frutescens extract was performed using gas chromatographic analysis. Acute toxicity was studied in vivo with oral administration of single doses 400 mg/kg, 1000 mg/kg, and 2000 mg/kg for 14 days. Subacute toxicity was studied with the administration of repeated doses of 400 mg/kg/day and 2000 mg/kg/day for 28 days. Phytochemical analysis of W. frutescens hydro-ethanolic extract confirmed the presence of interesting chemical compounds. Acute toxicity results showed no toxic symptoms in mice treated with an increasing dose up to a maximum of 2000 mg/kg. Alongside acute toxicity, subacute data showed no clinical symptoms nor biochemical or histological alteration in mice treated with an increasing dose up to a maximum of 2000 mg/kg compared to the control group (p < 0.05). This study shows no toxic effects in animals treated with W. frutescens extract, and, therefore, this plant can be considered safe in animals up to 2000 mg/kg under both acute and subacute toxicity conditions.


Author(s):  
PANDU SALIM HANAFI ◽  
AJI SUTRISNO ◽  
TUTIK MURNIASIH ◽  
HARIJONO ◽  
MASTERIA YUNOVILSA PUTRA ◽  
...  

Objective: This study aimed to evaluate the toxicological potential of the ethanol extract of Holothuria atra through the acute oral toxicity – acute toxic class method. Methods: The sample was immersed in ethanol for 72 h at room temperature and repeated 3 times. The extracts were evaporated using a vacuum rotary evaporator. The identification of compounds in the ethanol extract of H. atra was carried out using liquid chromatography–mass spectrometry (LCMS) analysis. The acute toxicity test was examined the effects of treating male mice with the ethanol extract of H. atra at 300 and 2000 mg/kg by oral administration for 14 days. On the past day of the toxicity test, liver of all experimental animals was taken for histopathological testing. Results: LCMS analysis showed that the ethanol extract of H. atra is contained polar compounds (chlorogenic acid, coumaric acid, a glycosaminoglycan, and holothurin) and non-polar compounds (fatty acids). Acute toxicity study was performed at a dose of 300 and 2000 mg/kg for 14 consecutive days. No deaths or behavioral changes were observed during the administration of both doses. Histopathological test results on the liver showed a few changes at doses of 2000 mg/kg. Conclusions: The LD50 is equal to 5000 mg/kg and the ethanol extracts of H. atra can be classified as practically nontoxic. However, further studies are required to proceed to clinical studies in humans.


Toxins ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 87 ◽  
Author(s):  
Silvio Sosa ◽  
Marco Pelin ◽  
Federica Cavion ◽  
Fabienne Hervé ◽  
Philipp Hess ◽  
...  

Pinnatoxin G (PnTx-G) is a marine cyclic imine toxin produced by the dinoflagellate Vulcanodinium rugosum, frequently detected in edible shellfish from Ingril Lagoon (France). As other pinnatoxins, to date, no human poisonings ascribed to consumption of PnTx-G contaminated seafood have been reported, despite its potent antagonism at nicotinic acetylcholine receptors and its high and fast-acting toxicity after intraperitoneal or oral administration in mice. The hazard characterization of PnTx-G by oral exposure is limited to a single acute toxicity study recording lethality and clinical signs in non-fasted mice treated by gavage or through voluntary food ingestion, which showed differences in PnTx-G toxic potency. Thus, an acute toxicity study was carried out using 3 h-fasted CD-1 female mice, administered by gavage with PnTx-G (8–450 µg kg−1). At the dose of 220 µg kg−1 and above, the toxin induced a rapid onset of clinical signs (piloerection, prostration, hypothermia, abdominal breathing, paralysis of the hind limbs, and cyanosis), leading to the death of mice within 30 min. Except for moderate mucosal degeneration in the small intestine recorded at doses of 300 µg kg−1, the toxin did not induce significant morphological changes in the other main organs and tissues, or alterations in blood chemistry parameters. This acute oral toxicity study allowed to calculate an oral LD50 for PnTx-G equal to 208 μg kg−1 (95% confidence limits: 155–281 µg kg−1) and to estimate a provisional NOEL of 120 µg kg−1.


Sign in / Sign up

Export Citation Format

Share Document