Micro photosynthetic power cell for power generation from photosynthesis of algae

TECHNOLOGY ◽  
2015 ◽  
Vol 03 (02n03) ◽  
pp. 119-126 ◽  
Author(s):  
Mehdi Shahparnia ◽  
Muthukumaran Packirisamy ◽  
Philippe Juneau ◽  
Valter Zazubovich

Devices such as solar and fuel cells have been studied for many decades and noticeable improvements have been achieved. This paper proposes a Micro Photosynthetic Power Cell (μPSC) as an alternative energy-harvesting device based on photosynthesis of blue-green algae. The effect of important biodesign parameters on the performance of the device, such as no-load performance and voltage–current (V–I) characteristics, were studied. Open-circuit voltage as high as 993 mV was measured while a peak power of 175.37 μW was obtained under an external load of 850 Ω. The proposed μPSC device could produce a power density of 36.23 μW/cm2, voltage density of 80 mV/cm2 and current density of 93.38 μA/cm2 under test conditions.

Author(s):  
Nathanael Royer ◽  
Ryan Hamilton ◽  
Jeffrey Collins ◽  
John Drazin ◽  
Dustin McLarty

Abstract A commercially available Anode Supported Cell (ASC) with an active area of 81 cm2 was characterized at pressures up to 9 bar at 750 °C using a custom-built pressurized test stand. Open Circuit Voltage (OCV) measurements of the cell indicated the existence of an intercell leak due to a cracked cell. Voltage characteristic curves were measured at 1, 3, and 9 bar using 50/50 N2/H2 (1.2 SLPM) and bottled air (1.5 SLPM). Measured current density at 0.70 V increased from 0.37 A·cm−2 to 0.43 A·cm−2 as a result of pressurization from atmospheric to 9 bar. Subsequent measurements were taken while flowing 100% dry hydrogen at 1.5 SLPM and 100% oxygen at 1.5 SLPM. Under these conditions at 9 bar the current density increased to 0.5 A·cm−2. The OCV and peak power density increased more than suggested by theory, suggesting that the balanced anode and cathode flow rates reduced the pressure differential across the cell resulting in less leakage. These preliminary measurements validate the significant potential for improved operational performance under pressurized conditions.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Yang Xia ◽  
Yun Tian ◽  
Lanbin Zhang ◽  
Zhihao Ma ◽  
Huliang Dai ◽  
...  

We present an optimized flutter-driven triboelectric nanogenerator (TENG) for wind energy harvesting. The vibration and power generation characteristics of this TENG are investigated in detail, and a low cut-in wind speed of 3.4 m/s is achieved. It is found that the air speed, the thickness and length of the membrane, and the distance between the electrode plates mainly determine the PTFE membrane’s vibration behavior and the performance of TENG. With the optimized value of the thickness and length of the membrane and the distance of the electrode plates, the peak open-circuit voltage and output power of TENG reach 297 V and 0.46 mW at a wind speed of 10 m/s. The energy generated by TENG can directly light up dozens of LEDs and keep a digital watch running continuously by charging a capacitor of 100 μF at a wind speed of 8 m/s.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Zainal Arifin ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Suyitno Suyitno ◽  
Argatya Tara Setyaji

Natural dyes have attracted much researcher’s attention due to their low-cost production, simple synthesis processes and high natural abundance. However the dye-sensitized solar cells (DSSCs) based natural dyes have higher tendency to degradation. This article reports on the enhancement of performance and stability of dye-sensitized solar cells (DSSCs) using natural dyes. The natural dyes were extracted from papaya leaves by ethanol solvent at a temperature of 50 °C. Then the extracted dyes were isolated and modified into Mg-chlorophyll using column chromatography. Mg-chlorophyll was then synthesized into Fe-chlorophyll to improve stability. The natural dyes were characterized using ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and cyclic voltammetry. The performance of DSSCs was tested using a solar simulator. The results showed the open-circuit voltage, the short-circuit current density, and the efficiency of the extracted papaya leaves-based DSSCs to be 325 mV, 0.36 mA/cm2, and 0.07%, respectively. Furthermore, the DSSCs with purified chlorophyll provide high open-circuit voltage of 425 mV and short-circuit current density of 0.45 mA/cm2. The use of Fe-chlorophyll for sensitizing the DSSCs increases the efficiency up to 2.5 times and the stability up to two times. The DSSCs with Fe-chlorophyll dyes provide open-circuit voltage, short-circuit current density, and efficiency of 500 mV, 0.62 mA/cm2, and 0.16%, respectively. Further studies to improve the current density and stability of natural dye-based DSSCs along with an improvement in the anchor between dyes and semiconducting layers are required.


2020 ◽  
Vol 8 (45) ◽  
pp. 23894-23905
Author(s):  
Hwa Sook Ryu ◽  
Hyun Gyeong Lee ◽  
Sang-Chul Shin ◽  
Jooho Park ◽  
Sang Hyeon Kim ◽  
...  

Terminal alkyl substituents in IDIC nonfullerene acceptors improve light absorption, crystalline packing and charge mobility in films.


Author(s):  
S. Hashimoto ◽  
Y. Liu ◽  
K. Asano ◽  
M. Mori ◽  
Y. Funahashi ◽  
...  

A micro tubular solid oxide fuel cell (SOFC) bundle was developed based on new concept. The anode-supported micro tubular SOFCs with the cell configuration, La0.6Sr0.4Co0.2Fe0.8 O3−δ (LSCF) – Ce0.9Gd0.1O2−δ (CGO) cathode / CGO electrolyte / Ni – CGO anode were fabricated and were bundled by a porous LSCF current collecting cube 1 cm on a side. The power generation test of the fabricated SOFC bundle was carried out under pressurized conditions. Using wet 30%H2 / N2 mixture gas and air, the cubic power density of the bundle at 500°C was 0.47 Wcm−3 at 0.4Acm−2, atmospheric pressure (0.1MPa). With increasing operating pressure, the performance has been improved, and the cubic power density finally reached to 0.66 Wcm−3 at 0.6MPa. Pressurization effect for the power improvement was brought about by the open circuit voltage enhancement and reduction of the polarization resistance.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Parth Bhatt ◽  
Kavita Pandey ◽  
Pankaj Yadav ◽  
Brijesh Tripathi ◽  
Manoj Kumar

This paper investigates the effect of ageing on the performance of dye-sensitized solar cells (DSCs). The electrical characterization of fresh and degraded DSCs is done under AM1.5G spectrum and the current density-voltage (J-V) characteristics are analyzed. Short circuit current density (JSC) decreases significantly whereas a noticeable increase in open circuit voltage is observed. These results have been further investigated electroanalytically using electrochemical impedance spectroscopy (EIS). An increase in net resistance results in a lower JSC for the degraded DSC. This decrease in current is mainly due to degradation of TiO2-dye interface, which is observed from light and dark J-V characteristics and is further confirmed by EIS measurements. A reduction in the chemical capacitance of the degraded DSC is observed, which is responsible for the shifting of Fermi level with respect to conduction band edge that further results in an increase of open circuit voltage for the degraded DSC. It is also confirmed from EIS that the degradation leads to a better contact formation between the electrolyte and Pt electrode, which improves the fill factor of the DSC. But the recombination throughout the DSC is found to increase along with degradation. This study suggests that the DSC should be used under low illumination conditions and around room temperature for a longer life.


Author(s):  
Pinchas Schechner ◽  
Eugenia Bubis ◽  
Hana Faiger ◽  
Eyal Zussman ◽  
Ehud Kroll

This work adds more experimental evidence regarding the feasibility of using glucose to fuel fuel-cells with anodes that have a high area-to-volume ratio. Electrospinning was used to fabricate sub-micrometer size fibrous electrocatalytic anode membranes for the oxidation of glucose in an alkaline fuel cell (AFC). The fibers of the membranes were made of polyacrylonitrile (PAN) and coated with silver by electroless plating. The anodes were tested while installed in a membranless fuel cell. The results presented include the open circuit voltage, OCV, the polarization curve, the power density as a function of the current density, and the peak power density, PPD. The measurements were performed with constant concentrations of glucose, 0.8 M, and KOH electrolyte solution, 1M. The performance of the anodes was found to improve as the diameter of the silver-plated fibers decreased. The highest PPD of 0.28 mW/cm2 was obtained with an anode made of plated fibers having a mean fiber diameter of 130 nanometers. We conclude from the results that saccharides in general, and glucose in particular, can serve as fuels for fuel cells, and that silver-plated polymeric electrospun electrodes have advantages due to their large surface area.


2011 ◽  
Vol 347-353 ◽  
pp. 2616-2621
Author(s):  
Jia Mei Song ◽  
Dong Ping Sun ◽  
Lei Zhao ◽  
Hong Ju Jiang ◽  
Chun Lin Zhu

Microbial Fuel Cells (MFCs) are systems that can convert chemical energy into electrical energy by biological oxidation, current effort to improve the power output is limited by the lack of knowledge about the electrochemical activity bacteria and researches on the power generation mechanisms of pure strains are rare. In this study, the exoelectrogenic (”exo” for exocellular) bacterium staphylococcus SJ-1 was directly isolated from the MFC, which was stably run for 90 days. Cyclic Voltammetry (CV) indicated that temporary mediator produced by SJ-1 may take the work of transferring electron. A new built double-chamber MFC was inoculated with pure SJ-1, and after 40 days enrichment, the system produced 520mW/m2 power density and the highest open circuit voltage (OCV) reached to 616mV, the power output was higher than most of the single-strain MFCs reported.


Sign in / Sign up

Export Citation Format

Share Document