scholarly journals Hydrogeochemical characteristics and geothermometry of hot springs in the Mongolian Altai region, Mongolia

2021 ◽  
pp. geochem2021-016
Author(s):  
Bolormaa Chimeddorj ◽  
Dolgormaa Munkhbat ◽  
Battushig Altanbaatar ◽  
Oyuntsetseg Dolgorjav ◽  
Bolormaa Oyuntsetseg

This study determines the properties of hot spring waters and associated rocks, calculates reservoir temperatures and depths in the Mongolian Altai region, and constructs a conceptual model for geothermal water based on these results. The hot springs consist of HCO3-Na, SO4-Na, and HCO3-SO4-Na mixed type waters. The waters exhibit alkaline pH levels and temperatures in the range of 21.3–35°C. X-ray diffraction analyses of outcrop rocks reveal silicate and carbonate-type minerals such as quartz, albite, orthoclase, dolomite, mica, and actinolite, while correlation analysis indicates that the chemical composition of the hot spring water is directly related to rock mineral composition. Dissolution of albite, orthoclase, and dolomite minerals has played an important role in the chemical composition of the waters. Reservoir water circulation depths were 2615–3410 m according to quartz and chalcedony geothermometry. The results indicate that the spring water in the Mongolian Altai region comprises a low mineral content with alkaline pH levels and the reservoir temperature can reach up to 106°C. We also propose a conceptual model for geothermal water in the Chikhertei hot spring. The geothermal water in the Mongolian Altai region exhibits a potential for use in heating systems.Thematic collection: This article is part of the Hydrochemistry related to exploration and environmental issues collection available at: https://www.lyellcollection.org/cc/hydrochemistry-related-to-exploration-and-environmental-issues

Author(s):  
Bolormaa Ch ◽  
Oyuntsetseg D ◽  
Bolormaa O

In this study, we collected hot spring water sample from Otgontenger, Tsetsuukh, Zart, Ulaan Khaalga and Khojuul in Zavkhan province. The purpose of this study is to determine the temperature of geothermal water and its depth which based on the hydrochemical component. Hot spring water analyses showed that temperature ranges between 33.4 to 45.5°C, pH ranges 8.40 to 9.56, and the total dissolved solid amount was 170 to 473 mg/L. From the result of hydrochemical analyses, hot spring samples were included in SO4-Na and HCO3-Na type. In comparison to other hot spring samples, Tsetsuukh hot spring has shown negative oxidation reduction potential, -0.8 mV and dissolved hydrogen, 0.22 mg/L. Therefore, it has a higher ability for medical treatment than other hot spring water due to its reduction state. The reservoir temperature of these hot springs is calculated by several geothermometer methods, and temperatures ranged between 102оC to 149оC. According to this result, it assumed that geothermal water with low temperature which has the ability to use for room heating and producing energy by the binary system. Thus, we determined that reservoir depth is 1.3 to 3.7 km using annual average surface and reservoir temperature, and regional geothermal gradient. Завхан аймгийн халуун рашаануудын химийн найрлага, геотермометрийн судалгаа Хураангуй: Бид энэхүү судалгааны ажлаар Завхан аймгийн нутагт орших Отгонтэнгэр, Зарт, Цэцүүх, Улаан хаалга, Хожуулын халуун рашаануудын гидрохимийн найрлагыг нарийвчлан тогтоосоны үндсэн дээр тухайн рашаануудын газрын гүний халуун усны температур болон гүнийг тогтоох зорилго тавин ажиллаа. Завхан аймгийн рашаанууд нь халуун 33.4-45.5°C температуртай, шүлтлэг орчинтой (pH 8.4-9.56), 170-473 мг/л хүртэл эрдэсжилттэй, HCO3-Na болон SO4-Na-ийн төрлийн халуун рашааны ангилалд хамаарагдаж байна. Эдгээр рашаануудаас Цэцүүхийн халуун рашааны исэлдэн ангижрах потенциал нь -0.8 мВ, ууссан устөрөгчийн агуулга 0.22 мг/л илэрсэн нь судалгаанд хамрагдсан бусад рашаануудтай харьцуулахад ангижрах төлөвт оршиж байгаа бөгөөд илүү эмчилгээний идэвхтэй болохыг харуулж байна. Судалгаанд хамрагдсан халуун рашаануудын гүний температурыг химийн найрлагаас нь хамааруулан хэд хэдэн геотермометрийг ашиглан тооцоход дунджаар 102-149oС байсан ба энэ нь бага температуртай усны ангилалд хамаарагдаж байгаа учир тухайн халуун усны нөөцийг өрөө тасалгаа халаах болон бинари системийг ашиглан цахилгаан гаргаж авах боломжтой байна. Мөн Завхан аймгийн халуун рашаануудын газрын гүний халуун усны нөөц нь газрын гадаргаас доош 1.3-3.7 км-ийн гүнд байрладаг болохыг орд дээрх температур, газрын гүний халуун усны температур болон бүс нутгийн геотермал градиентад үндэслэн тооцоолон тодорхойллоо. Түлхүүр үг: Гидрохими, халуун рашаан, геотермометр, гүний температур.


Author(s):  
Sachrul Iswahyudi ◽  
Indra Permanajati ◽  
Rachmad Setijadi ◽  
Januar Aziz Zaenurrohman ◽  
Muhamad Afirudin Pamungkas

The existences of several hot springs between Slamet volcano, Paguyangan, and Cipari Districts raised questions regarding their origin. Several studies have been conducted related to the hydrothermal system at the location. Subsequent studies are needed to understand the hydrothermal system at the research site for the sustainability and conservation of geothermal natural resources. This research has reviewed several previous studies plus the latest information on the origin of hot spring water with the help of deuterium (2H) and 18O isotopes. This study used geochemical analysis of hot springs (geothermal) and local meteoric water to obtain information on isotope values. This was used for the interpretation of the origin of geothermal water. This study also used regional geological analysis methods for the interpretation of the mechanism for the emergence of these hot springs. The results of the analysis informed that the origin of hot water was local meteoric water. The geological structure was weak enough to allow water from the geothermal reservoir to reach the surface and meteoric water into the reservoir.


2021 ◽  
Vol 13 (1) ◽  
pp. 820-834
Author(s):  
Jun Ma ◽  
Zhifang Zhou

Abstract The exploration of the origin of hot spring is the basis of its development and utilization. There are many low-medium temperature hot springs in Nanjing and its surrounding karst landform areas, such as the Tangshan, Tangquan, Lunshan, and Xiangquan hot springs. This article discusses the origin characters of the Lunshan hot spring with geological condition analysis, hydrogeochemical data, and isotope data. The results show that the hot water is SO4–Ca type in Lunshan area, and the cation content of SO4 is high, which are related to the deep hydrogeological conditions of the circulation in the limestone. Carbonate and anhydrite dissolutions occur in the groundwater circulation process, and they also dominate the water–rock interaction processes in the geothermal reservoir of Lunshan. The hot water rising channels are deeply affected by the NW and SN faults. Schematic diagrams of the conceptual model of the geothermal water circulation in Lunshan are plotted. The origin of Tangshan, Tangquan, and Xiangquan hot springs are similar to the Lunshan hot spring. In general, the geothermal water in karst landforms around Nanjing mainly runs through the carbonate rock area and is exposed near the core of the anticlinal structure of karst strata, forming SO4–Ca/SO4–Ca–Mg type hot spring with the water temperature less than 60°C. The characters of the hot springs around Nanjing are similar, which are helpful for the further research, development, and management of the geothermal water resources in this region.


Author(s):  
Eka Djatnika Nugraha ◽  
Masahiro Hosoda ◽  
June Mellawati ◽  
Untara Untara ◽  
Ilsa Rosianna ◽  
...  

The world community has long used natural hot springs for tourist and medicinal purposes. In Indonesia, the province of West Java, which is naturally surrounded by volcanoes, is the main destination for hot spring tourism. This paper is the first report on radon measurements in tourism natural hot spring water in Indonesia as part of radiation protection for public health. The purpose of this paper is to study the contribution of radon doses from natural hot spring water and thereby facilitate radiation protection for public health. A total of 18 water samples were measured with an electrostatic collection type radon monitor (RAD7, Durridge Co., USA). The concentration of radon in natural hot spring water samples in the West Java region, Indonesia ranges from 0.26 to 31 Bq L−1. An estimate of the annual effective dose in the natural hot spring water area ranges from 0.51 to 0.71 mSv with a mean of 0.60 mSv for workers. Meanwhile, the annual effective dose for the public ranges from 0.10 to 0.14 mSv with an average of 0.12 mSv. This value is within the range of the average committed effective dose from inhalation and terrestrial radiation for the general public, 1.7 mSv annually.


Author(s):  
Sutthipong Taweelarp ◽  
Supanut Suntikoon ◽  
Thaned Rojsiraphisal ◽  
Nattapol Ploymaklam ◽  
Schradh Saenton

Scaling in a geothermal piping system can cause serious problems by reducing flow rates and energy efficiency. In this work, scaling potential of San Kamphaeng (SK) geothermal energy, Northern Thailand was assessed based on geochemical model simulation using physical and chemical properties of hot spring water. Water samples from surface seepage and groundwater wells, analyzed by ICP-OES and ion chromatograph methods for chemical constituents, were dominated by Ca-HCO3 facies having partial pressure of carbon dioxide of 10–2.67 to 10–1.75 atm which is higher than ambient atmospheric CO2 content. Surface seepage samples have lower temperature (60.9°C) than deep groundwater (83.1°C) and reservoir (127.1°C, based on silica geothermometry). Geochemical characteristics of the hot spring water indicated significant difference in chemical properties between surface seepage and deep, hot groundwater as a result of mineral precipitation along the flow paths and inside well casing. Scales were mainly composed of carbonates, silica, Fe-Mn oxides. Geochemical simulations based on multiple chemical reaction equilibria in PHREEQC were performed to confirm scale formation from cooling and CO2-degassing processes. Simulation results showed total cumulative scaling potential (maximum possible precipitation) from 267-m deep well was estimated as 582.2 mg/L, but only 50.4% of scaling potential actually took place at SK hot springs. In addition, maximum possible carbon dioxide outflux to atmosphere from degassing process in SK geothermal field, estimated from the degassing process, was 6,960 ton/year indicating a continuous source of greenhouse gas that may contribute to climate change. Keywords: Degassing, Geochemical modeling, PHREEQC, San Kamphaeng Hot Springs, Scaling


2014 ◽  
Vol 2 (12) ◽  
pp. 7293-7308
Author(s):  
Z. Chen ◽  
X. Zhou ◽  
J. Du ◽  
C. Xie ◽  
L. Liu ◽  
...  

Abstract. Hydrogeochemistry of 10 hot springs in the Kangding district was investigated by analyzing cation and anion concentrations of the spring waters. The water samples were collected within 5 days after the Lushan earthquake. The spring waters are classified into 7 chemical types based on the hydrochemical compositions. Comparison with the hydrochemical data before the Lushan earthquake, concentrations of Ca2+, HCO3− and TDS of the waters from the Guanding, Erdaoqiao, Gonghe, Erhaoying, Tianwanhe and Caoke springs evidently increased, which resulted from enhancing interaction between deep-earth fluids and carbonate rocks by the increment of dissolved CO2 in the groundwater. Concentrations of Na+, Cl− and SO42− of the waters from the Guanding, zheduotang, Xinxing and Gonghe springs were decreased, indicating dilution of precipitation water. Concentrations of Na+ and SO42− of the Erhaoying spring water increased, which may be attributed to the more supplement of fluids enriched in sulfur. The results indicate that hydrochemical components of spring water can be used as an effective indicator for earthquakes.


Author(s):  
Sirjana Tiwari

Background: Natural hot spring bath has enormous health benefits. The water found in natural hot springs contains a variety of different minerals which shows positive benefits on rheumatism, skin diseases, gastritis, sinusitis, cardiac diseases, joint pain and many more. The healing effect is mostly from mineral composition.Methods: Phenomenological study was conducted on twenty-one participants who were taking natural hot spring water bath in Singha tatopani, Myagdi. Each participant was randomly selected. Eight In-depth interview and two focus group discussion were used for collecting information. People who have immediate bath experience were included in the study and those who were ill and not able to response the question due to illness were excluded from the study. Informed consent was taken from each participant before participation. Afterwards transcripts were transcribe and translated in English and analyzed using thematic analysis was done with the means of Ms. Excel.Results: Participants perceived natural hot spring water bath has positive effects on health and experience large sweating and excretion of urine while bathing. It helps to run their digestive system smoothly, improve blood circulation, and prevent skin problem, relief uric acid, sinusitis, pneumonia, tonsillitis, nose allergy, chest allergy, bronchitis and insomnia. Hot spring foment their pain organ and promote health of accidental victims, physically handicapped people, minimized uterine problem of women, eye itching and epiphora (watery eye).Conclusions: Common diseases Gastritis, rheumatism, skin disease, uric acid can be relieved by taking natural hot spring water bath as well as it help to promote and improve their health status. That’s why natural hot spring water bath can be a beneficial for improvement of public health.


2019 ◽  
Vol 23 (5 Part A) ◽  
pp. 2613-2622
Author(s):  
Bi Li ◽  
Shi Zheng

Guangxi Guilin area, China, is rich in hot spring resources. In this paper, a hot spring water temperature monitoring system is developed for longsheng hot springs. Mainly using the hot water of eye of hot springs as the heat source, designing a set of multi-point temperature monitoring system with single-chip and multi-slave as the core of the single-chip microcomputer and wireless and bi-directional transmission for the main station and multiple slave stations to realize automatic temperature monitoring. The system slave station can exchange geothermal water with high temperature extracted from the eye of hot springs and cold water, and automatically control the temperature of the hot spring pool to reach a set value range by controlling the flow rate of the cold water. At the same time, the main station can complete the tasks of monitoring system by setting control commands such as temperature.


2015 ◽  
Vol 15 (6) ◽  
pp. 1149-1156 ◽  
Author(s):  
Z. Chen ◽  
X. Zhou ◽  
J. Du ◽  
C. Xie ◽  
L. Liu ◽  
...  

Abstract. Hydrogeochemistry of 10 hot springs in the Kangding district was investigated by analyzing cation and anion concentrations in the spring water. The water samples were collected in the 5 days after the Lushan MS = 7.0 earthquake, which occurred on 20 April 2013. The spring waters are classified into seven chemical types based on their hydrochemical compositions. Compared with hydrochemical data before the Lushan earthquake, concentrations of Ca2+, HCO3- and total dissolved solid (TDS) in water samples from the Guanding, Erdaoqiao, Gonghe, Erhaoying, Tianwanhe and Caoke springs significantly increased, which may be the result of a greater increase in groundwater from carbonate rocks, and water–carbonate rock interactions, enhanced by the increment of CO2. Concentrations of Na+, Cl- and SO42- in water samples from the Guanding, Zheduotang, Xinxing and Gonghe springs decreased, indicating a dilution of shallow waters. Concentrations of Na+ and SO42- in water samples from the Erhaoying spring water increased, which may be attributed to water–granite interactions enhanced by H2S. The results indicated that hydrochemical components of spring water could be used as an effective indicator for earthquakes.


2020 ◽  
Author(s):  
Asmita Maitra ◽  
Saibal Gupta ◽  
Mruganka Kumar Panigrahi ◽  
Tirumalesh Keesari

<p>Hot springs in the stable Indian shield are non-volcanic in origin. Atri and Tarbalo are two such hot springs in the Eastern Ghats Province (EGP), Eastern India and these are characterized as part of a low enthalpy geothermal system. Stable isotopic, geochemical and geothermometric studies were carried out on these two hot springs as well as on the groundwater of this region to understand the origin and evolution of these non-volcanic hot springs as well as subsurface water system in terms of the source of the dissolved solute in the water, mixing processes and the residence time of the thermal and non-thermal waters. Surface temperature of the slightly alkaline hot spring waters ranges from 45 to 58 °C. Temperature of the cold groundwater, collected from tube and dug well varies between 28 and 32 °C. A distinct hydro-chemical difference can be interpreted from the major ion concentrations of hot waters and non-thermal waters. Hot spring waters have higher concentrations of sodium, potassium and lower calcium, magnesium than cold water. While the hot springs waters are enriched in Cl<sup>-</sup> and F<sup>-</sup> and cold waters are rich in bicarbonate. The low bicarbonate concentration of thermal waters may indicate that the hot spring reservoirs have no atmospheric effect. Definite geochemical differences between these two types of water suggested that there is no mixing between hot spring water and cold groundwater. Thermodynamic calculations suggest that mineral dissolution is the predominant evolutionary mechanism for the thermal and non-thermal waters and these waters hold a partially equilibrated state with the surrounding rocks. Bivariate plots of the major ions also indicate that silicate weathering is the dominant mechanism controlling solutes concentrations in the cold water whereas evaporite dissolution more likely involves in the evolution of hot spring water. The measured stable isotope ratios (δ<sup>2</sup>H and δ<sup>18</sup>O) of all the hot and most of the cold-water samples plot along the Global Meteoric Water Line (GMWL), indicating their meteoric origin where as some cold waters show evaporation effect which suggests atmospheric influence. Tritium and <sup>14</sup>C ages indicate that the cold waters are relatively modern, while the hot waters have a longer residence time of about 5000 years. Based on the chemical characteristics of the hot waters Na-K thermometer, Na-K-Ca thermometer and silica (quartz) thermometer were used to estimate the reservoir temperatures. Cation and silica geothermometers yield similar estimation of the reservoir temperature between 125 -150 °C for hot spring waters. Results of geochemical (numerical) modelling of water-rock interaction in this region, using PHREEQC, are consistent with hydrochemical analysis. Inverse modelling and saturation indices of minerals indicate that water chemistry in this region is controlled by the dissolution of feldspar and saturated with kaolinite, gibbsite and fluorite. This equilibrium is attained in the thermal waters, which therefore show a more restricted range of composition than the non-thermal, colder waters. The higher fluoride concentration in the thermal water may also be attributed of chemical equilibrium with the enclosing host rock.</p>


Sign in / Sign up

Export Citation Format

Share Document