Rapid cooling during late-stage orogenesis and implications for the collapse of the Scandian retrowedge, northern Scotland

2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-022
Author(s):  
B.M. Spencer ◽  
J.R. Thigpen ◽  
R.D. Law ◽  
C.A. Mako ◽  
C.S. McDonald ◽  
...  

New 40Ar/39Ar thermochronological and deformation temperature analyses in the Scandian (c. 435–420 Ma) orogenic retrowedge of northern Scotland demonstrate accelerated cooling during late syn- to post-orogenic exhumation of the high-grade orogenic core. Initial cooling rates of 10–30°C myr−1 immediately following peak orogenesis transitioned to rapid rates of 45–90°C myr−1 during final exhumation of the Naver thrust sheet in the orogenic core. The flanking ductile thrust sheets exhibit a similar, albeit less pronounced, acceleration of cooling, with rates increasing by c. 150–300% following peak orogenesis. Closer to the foreland, the Moine thrust sheet did not experience increased cooling rates. Calculated unroofing rates of 3.75 mm a−1 in the high-grade Naver thrust sheet suggest increasing, rapid exhumation in the orogenic core during a presumed collapse phase of orogenesis. This is contrary to the expectation of decreasing erosional efficiency as topography is diminished and is interpreted to suggest that unroofing of the Scottish Caledonides may have been partially enhanced by upper crustal extensional deformation during ductile flow of the infrastructure of the orogenic core. Similar processes have been interpreted in the East Greenland Caledonides, which form the northern extension of the Scandian retrowedge.Supplementary material:40Ar/39Ar analytical data for muscovite (Supplementary Data Table 1), 40Ar/39Ar analytical data for amphibole (Supplementary Data Table 2), and electron microprobe analytical data for amphibole samples (Supplementary Data Table 3) is available at: https://doi.org/10.6084/m9.figshare.c.5087057

2020 ◽  
pp. jgs2020-093
Author(s):  
Peter D. Clift ◽  
Amy L. Luther ◽  
Madison E. Avery ◽  
Paul B. O'Sullivan

Early Ordovician collision of the Lough Nafooey Arc (part of the Baie Verte Oceanic Tract) with the passive continental margin of Laurentia peaked at c. 475 Ma in Scotland and Ireland and was followed by subduction polarity reversal. We examined Upper Ordovician–Silurian sedimentary rocks from western Ireland to see whether collision was followed by renewed arc magmatism. Despite the scarcity of dated igneous intrusions between the Grampian (c. 470 Ma) and Acadian (c. 420 Ma) orogenies in Ireland, detrital zircons show a continuity of activity peaking at 480–440 Ma, implying no hiatus in regional magmatism. Differences in zircon U–Pb age spectra highlight the isolation of basins in the southern Killary Harbour area from those north of the South Mayo Trough. These latter rocks were largely derived by erosion from Moine and Upper Dalradian sources. By contrast, the Killary Harbour Basin shows a decreasing influence from the Dalradian after c. 436 Ma and an increasing influence of contemporaneous magmatic zircons. These were transported from sources along-strike from the present NE, probably at the southern end of the Scandian Mountains in SE Greenland. The western Irish basins formed as pull-apart basins in a forearc setting and are analogous to Cenozoic pull-apart basins in Sumatra.Supplementary material: U-Pb zircon analytical data is available at a decreasing influence from the Dalradian after c. 436 Ma and an increasing influence of contemporaneous https://doi.org/10.6084/m9.figshare.c.5209849


2021 ◽  
pp. jgs2021-018
Author(s):  
Clemens V. Ullmann ◽  
Dominika Szűcs ◽  
Mengjie Jiang ◽  
Alexander J.L. Hudson ◽  
Stephen P. Hesselbo

The Llanbedr (Mochras Farm) core (Wales, United Kingdom) yielded a > 1,300 m long mudrock sequence which has excellent potential for establishing an integrated stratigraphic scheme for the entire Early Jurassic Epoch. Lithological variations in the core are predominantly driven by hierarchical changes in carbonate content which also dominate – or may impact upon – many geochemical and physical properties of the core. The bulk carbonate carbon isotope record displays systematic fluctuations the largest of which correspond to previously identified phases of environmental perturbation. The magnitudes of negative carbon isotope excursions in carbonate are inflated compared to equivalents previously described elsewhere due to diagenesis and concomitant loss of primary carbonate.The marine macrofossil record of Mochras reveals biological and isotopic patterns that are generally comparable to other UK basins. Potentially significant differences between Cleveland and Cardigan Bay Basin are observed in the Pliensbachian and Toarcian fossils. This different expression may be related to different habitat structure or palaeoceanographic and water depth differences between these basins. Minima in macrofossil δ18O values generally coincide with peaks in macrofossil wood abundance and sea-level lowstands inferred from sequence stratigraphic interpretation of other UK sections. This relationship points to a possible relative sea-level control on observed oxygen isotope records and sediment provenance.Supplementary material: Analytical data for the Mochras core pertaining to this contribution is available online at https://doi.org/10.6084/m9.figshare.c.5463508


2021 ◽  
pp. jgs2020-061
Author(s):  
Melina C. B. Esteves ◽  
Frederico M. Faleiros

The western margin of the São Francisco Craton, central Brazil presents a 1300 km long foreland fold–thrust belt where Ediacaran-Cambrian (560–520 Ma) metasedimentary rocks from the Bambuí Group were subsequently deformed during post-collisional stages (520–495 Ma) related to Gondwana assembly. This scenario provides an opportunity to quantify fluid flow regimes and fault-related processes that were active in exhumed foreland fold–thrust zones, which were estimated based on structural, microstructural and fluid inclusion studies of syntectonic veins and host rocks. Kaolinite-bearing synkinematic mineral assemblages from metasedimentary rocks, thermodynamic models and grain-scale deformation accommodated by dissolution–precipitation creep and intracrystalline deformation indicate metamorphic and deformational conditions of 250–270°C. Subhorizontal extensional veins formed under subhorizontal shortening and subvertical extension, supporting vein development under a fold–thrust regime that formed regional NW–SE-trending thrust fault zones and megafolds with NW–SE-trending axes. Orientation and growth microstructures indicate that NW–SE-trending subvertical cleavage-parallel veins formed under subhorizontal NE–SW extension, compatible with those inferred to produce mapped kilometre-scale gentle folds with NE–SW-trending traces. Two primary aqueous fluid inclusion assemblages (FIA) are distinguished by salinity variation: 2–21 wt% NaCleq. in subhorizontal veins and 6–0 wt% NaCleq. in cleavage-parallel subvertical veins. Fluid inclusion thermometry and microstructural analysis suggest that veins crystallized between 250 and 270°C under fluid pressure fluctuating within a range of 50–500 MPa (subhorizontal veins) and 80–320 MPa (cleavage-parallel subvertical veins), evidencing fault-valve behaviour. Trends of coupled decreases in salinity and homogenization temperatures in both FIA indicate downward mixing of meteoric fluids, which was more effective in subvertical veins and was in both cases enhanced by fault-valve behaviour. Dominance of moderate salinity and absence of CO2 and CH4 indicate that the fluids are dominated by formation waters. The salinity signature is similar to those of formation waters and metamorphic fluids derived from rocks of shallow marine environments worldwide.Supplementary material: Details of samples and analytical data are available at https://doi.org/10.6084/m9.figshare.c.5275031


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2019-197
Author(s):  
Hanwen Dong ◽  
Kyle P. Larson ◽  
Dawn A. Kellett ◽  
Zhiqin Xu ◽  
Guangwei Li ◽  
...  

The Yadong–Gulu graben preserves the kinematic and temporal relationships between east–west-directed extension in southern Tibet and north–south extensional strain in the Himalaya. In the Yadong region, distinct outer and inner top-down-to-the-north segments of the South Tibetan detachment system (STDS) are recognized. Herein, we combine high- to medium-T (U–Pb, 40Ar/39Ar) and low-T (apatite fission-track, apatite (U–Th)/He and zircon (U–Th)/He) thermochronometry to investigate the timing of slip across the STDS and Yadong–Gulu structures. These data demonstrate that the cessation of the Yadong shear zone, the structurally outer ductile segment of the STDS, occurred c. 20 Ma and that motion along the inner brittle–ductile Zherger La detachment continued after c. 16.6 Ma, ending by 11 Ma. The cooling history in the immediate STDS footwall is characterized by two main episodes of relatively rapid cooling and exhumation. The first occurred in the middle Miocene (c. 15–11 Ma), and is common along-strike of the innermost STDS footwall, related to cooling of the STDS. The second occurred in the late Miocene–Pliocene (c. 7–3 Ma), and is local to the Yadong–Gulu graben footwall in NW Bhutan, indicating that late Miocene–Pliocene slip along the graben system contributed to exhumation of the STDS east of the graben rift.Supplementary material: Tables of analytical data, dating results, and input data and model parameters of HeFTy are available at https://doi.org/10.6084/m9.figshare.c.5132941


2021 ◽  
pp. SP520-2021-144
Author(s):  
Marie-Noëlle Guilbaud ◽  
Corentin Chédeville ◽  
Ángel Nahir Molina-Guadarrama ◽  
Julio Cesar Pineda-Serrano ◽  
Claus Siebe

AbstractThe eruption of the ∼10 km3 rhyolitic Las Derrumbadas twin domes about 2000 yrs ago has generated a wide range of volcano-sedimentary deposits in the Serdán-Oriental lacustrine basin, Trans-Mexican Volcanic Belt. Some of these deposits have been quarried, creating excellent exposures. In this paper we describe the domes and related products and interpret their mode of formation, reconstructing the main phases of the eruption as well as syn-and-post eruptive erosional processes. After an initial phreatomagmatic phase that built a tuff ring, the domes grew as an upheaved plug lifting a thick sedimentary pile from the basin floor. During uplift, the domes collapsed repeatedly to form a first-generation of hetero-lithologic hummocky debris avalanche deposits. Subsequent dome growth produced a thick talus and pyroclastic density currents. Later, the hydrothermally-altered over-steepened dome peaks fell to generate 2nd generation, mono-lithologic avalanches. Subsequently, small domes grew in the collapse scars. From the end of the main eruptive episode onwards, heavy rains remobilized parts of the dome carapaces and talus, depositing lahar aprons. Las Derrumbadas domes are still an important source of sediments in the basin, and ongoing mass-wasting processes are associated with hazards that should be assessed, given their potential impact on nearby populations.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5752296


2021 ◽  
pp. jgs2021-035
Author(s):  
Wanchese M. Saktura ◽  
Solomon Buckman ◽  
Allen P. Nutman ◽  
Renjie Zhou

The Jurassic–Cretaceous Tsoltak Formation from the eastern borderlands of Ladakh Himalaya consists of conglomerates, sandstones and shales, and is intruded by norite sills. It is the oldest sequence of continent-derived sedimentary rocks within the Shyok Suture. It also represents a rare outcrop of the basement rocks to the voluminous Late Cretaceous–Eocene Ladakh Batholith. The Shyok Formation is a younger sequence of volcaniclastic rocks that overlie the Tsoltak Formation and record the Late Cretaceous closure of the Mesotethys Ocean. The petrogenesis of these formations, ophiolite-related harzburgites and norite sill is investigated through petrography, whole-rock geochemistry and U–Pb zircon geochronology. The youngest detrital zircon grains from the Tsoltak Formation indicate Early Cretaceous maximum depositional age and distinctly Gondwanan, Lhasa microcontinent-related provenance with no Eurasian input. The Shyok Formation has Late Cretaceous maximum depositional age and displays a distinct change in provenance to igneous detritus characteristic of the Jurassic–Cretaceous magmatic arc along the southern margin of Eurasia. This is interpreted as a sign of collision of the Lhasa microcontinent and the Shyok ophiolite with Eurasia along the once continuous Shyok–Bangong Suture. The accreted terranes became the new southernmost margin of Eurasia and the basement to the Trans-Himalayan Batholith associated with the India-Eurasia convergence.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5633162


2021 ◽  
pp. geochem2021-074
Author(s):  
Godson Godfray

Successful gold exploration projects depend on a piece of clear information on the association between gold, trace elements, and mineralization controlling factors. The use of soil geochemistry has been an important tool in pinpointing exploration targets during the early stage of exploration. This study aimed to establish the gold distribution, the elemental association between gold and its pathfinder elements such as Cu, Zn, Ag, Ni, Co, Mn, Fe, Cd, V, Cr, Ti, Sc, In, and Se and identify lithologies contributing to the overlying residual soils. From cluster analysis, a high similarity level of 53.93% has been shown with Ag, Cd, and Se at a distance level of 0.92. Au and Se have a similarity level of 65.87% and a distance level of 0.68, hence is proposed to be the most promising pathfinder element. PCA, FA, and the Pearson's correlation matrix of transformed data of V, Cu, Ni, Fe, Mn, Cr, and Co and a stronger correlation between Pb and U, Th, Na, K, Sn, Y, Ta and Be shows that source gold mineralization might be associated with both hornblende gneisses interlayered with quartzite, tonalite, and tonalitic orthogneiss. From the contour map and gridded map of Au and its pathfinder elements, it has been noted that their anomalies and target generated are localized in the Northern part of the area. The targets trend ESE to WNW nearly parallel to the shear zones as a controlling factor of Au mineralization emplacement.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5721965


2021 ◽  
pp. SP521-2021-141
Author(s):  
Chang-Fu Zhou ◽  
Xinyue Wang ◽  
Jiahao Wang

AbstractCtenochasmatid pterosaurs flourished and diversified in the Early Cretaceous Jehol Biota. Here, a partial mandible of Forfexopterus is described based on a three-dimensional reconstruction using high-resolution X-ray Computed Tomography (CT) data. The first nine pairs of functional teeth of the rostral dentition revealed along with their replacements. The functional teeth are evenly arranged with a tooth density of 2.2 teeth/cm. The tooth crown is distinctly reduced from its base to the tip, and framed by two weak ridges, possibly as a pair of vestigial carinae. The replacement teeth are sharp and pointed, and have erupted slightly against the medial surface of the functional teeth. Surprisingly, tooth wear is observed in this specimen, the first record of tooth-tooth occlusion in ctenochasmatids. The wear facets exhibit high-angled lingual and lower-angled labial facets, implying a tooth-tooth occlusion in pterosaur clade. This discovery indicates that the Jehol ctenochasmatids possibly employed a more active feeding strategy than other filter-feeding pterosaurs (e.g. Ctenochasma, Pterodaustro, Gnathosaurus).Supplementary material at https://doi.org/10.6084/m9.figshare.c.5722060


2021 ◽  
pp. jgs2021-109
Author(s):  
Igor V. Kemkin ◽  
Andrei V. Grebennikov ◽  
Xing-Hua Ma ◽  
Ke-Ke Sun

We present new U–Pb age data for granitoids in the Central Sikhote–Alin orogenic belt in SE Russia, which refute the established opinion about the absence of the Late Cretaceous magmatism at the eastern margin of the Paleo-Asian continent. It was previously thought that a period of magmatic quiescence occurred from 88 to 50 Ma, related to subduction of the Paleo-Pacific Plate under the eastern margin of the Paleo-Asian continent, although this is inconsistent with evidence from the Sikhote–Alin, Sakhalin, and Japan regions. Three suites of plutonic rocks with different ages were identified in this study. The first suite has ages of 105–92 Ma and formed in a syn-orogenic setting. The second (86–83 Ma) and third (ca. 73 Ma) suites formed during the post-orogenic stage of the Sikhote–Alin orogenic belt. The second and third suites were coeval with Late Cretaceous granitoids that formed in a suprasubduction continental arc known as the Eastern Sikhote–Alin volcanic–plutonic belt (ESAVPB). However, the studied rocks are located far inland from the ESAVPB. The ages of the studied granitoids coincide with the timing of a change in the angle of convergence between the Paleo-Pacific Plate and eastern margin of the Paleo-Asian continent. This change in motion of the oceanic plate with respect to the continental plate was probably caused by a rupture in the subducted slab (i.e., a slab tear), followed by asthenospheric upwelling and partial melting of the overlying crust, which ultimately generated post-orogenic intrusive magmatism.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5738616


Sign in / Sign up

Export Citation Format

Share Document