Area efficient loop filter design for charge pump phase locked loop

Author(s):  
Raghavendra R G ◽  
Bharadwaj Amrutur
Author(s):  
P.N. Metange ◽  
K. B. Khanchandani

<p>This paper presents the analysis and design of high performance phase frequency detector, charge pump and loop filter circuits for phase locked loop in wireless applications. The proposed phase frequency detector (PFD) consumes only 8 µW and utilises small area. Also, at 1.8V voltage supply the maximum operation frequency of the conventional PFD is 500 MHz whereas proposed PFD is 5 GHz. Hence, highly suitable for low power, high speed and low jitter applications.  The differential charge pump uses switches using NMOS and the inverter delays for up and down signals do not generate any offset due to its fully symmetric operation. This configuration doubles the range of output voltage compliance compared to single ended charge pump. Differential stage is less sensitive to the leakage current since leakage current behaves as common mode offset with the dual output stages. All the circuits are implemented using cadence 0.18 μm CMOS Process.</p>


2019 ◽  
Vol 9 (3) ◽  
pp. 24 ◽  
Author(s):  
Naheem Olakunle Adesina ◽  
Ashok Srivastava

The main challenge in designing a loop filter for a phase locked loop (PLL) is the physical dimensions of the passive elements used in the circuit that occupy large silicon area. In this paper, the basic features of a charge-controlled memristor are studied and the design procedures for various components of a PLL are examined. Following this, we propose a memristor-based filter design which has its resistance being replaced by a memristor in order to reduce the die area and achieve a low power consumption. We obtained a tuning range of 741–994 MHz, a stable output frequency of 1 GHz from the transfer characteristics of voltage-controlled oscillator (VCO), and an improved settling time. In addition to reduced power consumption and area occupied on the chip, our design shows a high reliability over wider range of temperature variations.


2014 ◽  
Vol 631-632 ◽  
pp. 301-305 ◽  
Author(s):  
Bai Shan Zhao ◽  
Ye Xu ◽  
Jin Shuai Qu

Based on the basic principle of the phase locked loop, analyzes the structural characteristics of the loop filter technology and ADF4350; secondly, design and analysis of two order passive low pass filter, three order passive low pass filter, two order active low-pass filter, with parameters such as bandwidth, phase margin ADF4350 PLL, selection the loop filter is suitable for the actual situation; using ADIsimPLL software to determine the parameters and realize the optimization of S parameters on circuit simulation, optimized and then use ADS software to observe. Finally, according to the results of analysis to adapt to the situation three kinds of filter structure of ADF4350phase locked loop.


2005 ◽  
Vol 14 (05) ◽  
pp. 997-1006 ◽  
Author(s):  
ROBERT C. CHANG ◽  
LUNG-CHIH KUO ◽  
HOU-MING CHEN

A low-voltage low-power CMOS phase-locked loop (PLL) is presented in this paper. It consists of a phase frequency detector, a charge pump, a loop filter, a voltage-control oscillator, and a frequency divider. A new phase frequency detector is proposed to reduce the dead zone and the mismatch effect of the charge pump circuit. A novel charge pump circuit with a small area and wide output range is described. The PLL circuit has been designed using the TSMC 0.35 μm 1P4M CMOS technology. The chip area is 1.08 mm × 1.01 mm. The post-layout simulation results show that the frequency of 900 MHz can be generated with a single supply voltage of 1.5 V. The power dissipation of the circuit is 9.17 mW.


2012 ◽  
Vol 32 (3) ◽  
pp. 1013-1023 ◽  
Author(s):  
Yi-Bo Zhao ◽  
Chi-Kong Tse ◽  
Jiu-Chao Feng ◽  
Ye-Cai Guo

Sign in / Sign up

Export Citation Format

Share Document