Epilepsy Diagnosis Using Multi-view & Multi-medoid Entropy-based Clustering with Privacy Protection

2021 ◽  
Vol 21 (2) ◽  
pp. 1-21
Author(s):  
Yuanpeng Zhang ◽  
Yizhang Jiang ◽  
Lianyong Qi ◽  
Md Zakirul Alam Bhuiyan ◽  
Pengjiang Qian

Using unsupervised learning methods for clinical diagnosis is very meaningful. In this study, we propose an unsupervised multi-view & multi-medoid variant-entropy-based fuzzy clustering (M 2 VEFC) method for epilepsy EEG signals detecting. Comparing with existing related studies, M 2 VEFC has four main merits and contributions: (1) Features in original EEG data are represented from different perspectives that can provide more pattern information for epilepsy signals detecting. (2) During multi-view modeling, multi-medoids are used to capture the structure of clusters in each view. Furthermore, we assume that the medoids in a cluster observed from different views should keep invariant, which is taken as one of the collaborative learning mechanisms in this study. (3) A variant entropy is designed as another collaborative learning mechanism in which view weight learning is controlled by a user-free parameter. The parameter is derived from the distribution of samples in each view such that the learned weights have more discrimination. (4) M 2 VEFC does not need original data as its input—it only needs a similarity matrix and feature statistical information. Therefore, the original data are not exposed to users and hence the privacy is protected. We use several different kinds of feature extraction techniques to extract several groups of features as multi-view data from original EEG data to test the proposed method M 2 VEFC. Experimental results indicate M 2 VEFC achieves a promising performance that is better than benchmarking models.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 925 ◽  
Author(s):  
Hao Lan Zhang ◽  
Sanghyuk Lee ◽  
Xingsen Li ◽  
Jing He

Research on electroencephalography (EEG) signals and their data analysis have drawn much attention in recent years. Data mining techniques have been extensively applied as efficient solutions for non-invasive brain–computer interface (BCI) research. Previous research has indicated that human brains produce recognizable EEG signals associated with specific activities. This paper proposes an optimized data sampling model to identify the status of the human brain and further discover brain activity patterns. The sampling methods used in the proposed model include the segmented EEG graph using piecewise linear approximation (SEGPA) method, which incorporates optimized data sampling methods; and the EEG-based weighted network for EEG data analysis, which can be used for machinery control. The data sampling and segmentation techniques combine normal distribution approximation (NDA), Poisson distribution approximation (PDA), and related sampling methods. This research also proposes an efficient method for recognizing human thinking and brain signals with entropy-based frequent patterns (FPs). The obtained recognition system provides a foundation that could to be useful in machinery or robot control. The experimental results indicate that the NDA–PDA segments with less than 10% of the original data size can achieve 98% accuracy, as compared with original data sets. The FP method identifies more than 12 common patterns for EEG data analysis based on the optimized sampling methods.



Author(s):  
Yanna Zhao ◽  
Gaobo Zhang ◽  
Changxu Dong ◽  
Qi Yuan ◽  
Fangzhou Xu ◽  
...  

Automatic seizure detection from electroencephalogram (EEG) plays a vital role in accelerating epilepsy diagnosis. Previous researches on seizure detection mainly focused on extracting time-domain and frequency-domain features from single electrodes, while paying little attention to the positional correlations between different EEG channels of the same subject. Moreover, data imbalance is common in seizure detection scenarios where the duration of nonseizure periods is much longer than the duration of seizures. To cope with the two challenges, a novel seizure detection method based on graph attention network (GAT) is presented. The approach acts on graph-structured data and takes the raw EEG data as input. The positional relationship between different EEG signals is exploited by GAT. The loss function of the GAT model is redefined using the focal loss to tackle data imbalance problem. Experiments are conducted on the CHB-MIT dataset. The accuracy, sensitivity and specificity of the proposed method are 98.89[Formula: see text], 97.10[Formula: see text] and 99.63[Formula: see text], respectively.



Author(s):  
Yogendra Narayan

The electro encephalo gram (EEG) signals classification playsa major role in developing assistive rehabilitation devices for physically disabled performs. In this context, EEG data were acquired from 20 healthy humans followed by the pre-processing and feature extraction process. After extracting the 12-time domain features, two well-known classifiers namely K-nearest neighbor (KNN) and multi-layer perceptron (MLP) were employed. The fivefold cross-validation approach was utilized for dividing data into training and testing purpose. The results indicated that the performance of MLP classifier was found better than the KNN classifier. MLP classifier achieved 95% classifier accuracy which is the best. The outcome of this study would be very useful for online development of EEG classification model as well as designing the EEG based wheelchair.



2021 ◽  
Vol 11 (1) ◽  
pp. 25-32
Author(s):  
Qi Xin ◽  
Shaohai Hu ◽  
Shuaiqi Liu ◽  
Xiaole Ma ◽  
Hui Lv ◽  
...  

Clinical Electroencephalogram (EEG) data is of great significance to realize automatable detection, recognition and diagnosis to reduce the valuable diagnosis time. To make a classification of epilepsy, we constructed convolution support vector machine (CSVM) by integrating the advantages of convolutional neural networks (CNN) and support vector machine (SVM). To distinguish the focal and non-focal epilepsy EEG signals, we firstly reduced the dimensionality of EEG signals by using principal component analysis (PCA). After that, we classified the epilepsy EEG signals by the CSVM. The accuracy, sensitivity and specificity of our method reach up to 99.56%, 99.72% and 99.52% respectively, which are competitive than the widely acceptable algorithms. The proposed automatic end to end epilepsy EEG signals classification algorithm provides a better reference for clinical epilepsy diagnosis.



2021 ◽  
Vol 12 (3) ◽  
pp. 1-20
Author(s):  
Damodar Reddy Edla ◽  
Shubham Dodia ◽  
Annushree Bablani ◽  
Venkatanareshbabu Kuppili

Brain-Computer Interface is the collaboration of the human brain and a device that controls the actions of a human using brain signals. Applications of brain-computer interface vary from the field of entertainment to medical. In this article, a novel Deceit Identification Test is proposed based on the Electroencephalogram signals to identify and analyze the human behavior. Deceit identification test is based on P300 signals, which have a positive peak from 300 ms to 1,000 ms of the stimulus onset. The aim of the experiment is to identify and classify P300 signals with good classification accuracy. For preprocessing, a band-pass filter is used to eliminate the artifacts. The feature extraction is carried out using “symlet” Wavelet Packet Transform (WPT). Deep Neural Network (DNN) with two autoencoders having 10 hidden layers each is applied as the classifier. A novel experiment is conducted for the collection of EEG data from the subjects. EEG signals of 30 subjects (15 guilty and 15 innocent) are recorded and analyzed during the experiment. BrainVision recorder and analyzer are used for recording and analyzing EEG signals. The model is trained for 90% of the dataset and tested for 10% of the dataset and accuracy of 95% is obtained.



Author(s):  
Shaoqiang Wang ◽  
Shudong Wang ◽  
Song Zhang ◽  
Yifan Wang

Abstract To automatically detect dynamic EEG signals to reduce the time cost of epilepsy diagnosis. In the signal recognition of electroencephalogram (EEG) of epilepsy, traditional machine learning and statistical methods require manual feature labeling engineering in order to show excellent results on a single data set. And the artificially selected features may carry a bias, and cannot guarantee the validity and expansibility in real-world data. In practical applications, deep learning methods can release people from feature engineering to a certain extent. As long as the focus is on the expansion of data quality and quantity, the algorithm model can learn automatically to get better improvements. In addition, the deep learning method can also extract many features that are difficult for humans to perceive, thereby making the algorithm more robust. Based on the design idea of ResNeXt deep neural network, this paper designs a Time-ResNeXt network structure suitable for time series EEG epilepsy detection to identify EEG signals. The accuracy rate of Time-ResNeXt in the detection of EEG epilepsy can reach 91.50%. The Time-ResNeXt network structure produces extremely advanced performance on the benchmark dataset (Berne-Barcelona dataset) and has great potential for improving clinical practice.





Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1298
Author(s):  
Nan Zhao ◽  
Dawei Lu ◽  
Kechen Hou ◽  
Meifei Chen ◽  
Xiangyu Wei ◽  
...  

With the increasing pressure of current life, fatigue caused by high-pressure work has deeply affected people and even threatened their lives. In particular, fatigue driving has become a leading cause of traffic accidents and deaths. This paper investigates electroencephalography (EEG)-based fatigue detection for driving by mining the latent information through the spatial-temporal changes in the relations between EEG channels. First, EEG data are partitioned into several segments to calculate the covariance matrices of each segment, and then we feed these matrices into a recurrent neural network to obtain high-level temporal information. Second, the covariance matrices of whole signals are leveraged to extract two kinds of spatial features, which will be fused with temporal characteristics to obtain comprehensive spatial-temporal information. Experiments on an open benchmark showed that our method achieved an excellent classification accuracy of 93.834% and performed better than several novel methods. These experimental results indicate that our method enables better reliability and feasibility in the detection of fatigued driving.



2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Tahir Ahmad ◽  
Vinod Ramachandran

The mathematical modelling of EEG signals of epileptic seizures presents a challenge as seizure data is erratic, often with no visible trend. Limitations in existing models indicate a need for a generalized model that can be used to analyze seizures without the need for apriori information, whilst minimizing the loss of signal data due to smoothing. This paper utilizes measure theory to design a discrete probability measure that reformats EEG data without altering its geometric structure. An analysis of EEG data from three patients experiencing epileptic seizures is made using the developed measure, resulting in successful identification of increased potential difference in portions of the brain that correspond to physical symptoms demonstrated by the patients. A mapping then is devised to transport the measure data onto the surface of a high-dimensional manifold, enabling the analysis of seizures using directional statistics and manifold theory. The subset of seizure signals on the manifold is shown to be a topological space, verifying Ahmad's approach to use topological modelling.



Author(s):  
Sravanth Kumar Ramakuri ◽  
Chinmay Chakraboirty ◽  
Anudeep Peddi ◽  
Bharat Gupta

In recent years, a vast research is concentrated towards the development of electroencephalography (EEG)-based human-computer interface in order to enhance the quality of life for medical as well as nonmedical applications. The EEG is an important measurement of brain activity and has great potential in helping in the diagnosis and treatment of mental and brain neuro-degenerative diseases and abnormalities. In this chapter, the authors discuss the classification of EEG signals as a key issue in biomedical research for identification and evaluation of the brain activity. Identification of various types of EEG signals is a complicated problem, requiring the analysis of large sets of EEG data. Representative features from a large dataset play an important role in classifying EEG signals in the field of biomedical signal processing. So, to reduce the above problem, this research uses three methods to classify through feature extraction and classification schemes.



Sign in / Sign up

Export Citation Format

Share Document