scholarly journals Regulatory T Cells in Cancer

2020 ◽  
Vol 4 (1) ◽  
pp. 459-477 ◽  
Author(s):  
George Plitas ◽  
Alexander Y. Rudensky

The immune system has evolved complex effector mechanisms to protect the host against a diversity of pathogenic organisms and regulatory adaptations that can curtail pathological sequelae of inflammatory events, prevent autoimmunity, and assist in tissue repair. Cancers, by virtue of their local manifestations of tissue dysfunction and destruction, inflammation, and genomic instability, can evoke these protective mechanisms, which support the progression of tumors and prevent their immune eradication. Central to these processes is a subset of CD4+ T cells, known as regulatory T (Treg) cells, that express the X chromosome–linked transcription factor FOXP3. In addition to their critical role in controlling autoimmunity and suppressing inflammatory responses in diverse biological settings, Treg cells are ubiquitously present in the tumor microenvironment where they promote tumor development and progression by dampening antitumor immune responses. Furthermore, Treg cells can directly support the survival of transformed cells through the elaboration of growth factors and interacting with accessory cells in tumors such as fibroblasts and endothelial cells. Current insights into the biology of tumor-associated Treg cells have opened up opportunities for their selective targeting in cancer, with the goal of alleviating their suppression of antitumor immune responses while maintaining overall immune homeostasis.

Author(s):  
Runzi Sun ◽  
Yixian Wu ◽  
Huijun Zhou ◽  
Yanshi Wu ◽  
Zhongzhou Yang ◽  
...  

Sustaining efficacious T cell-mediated antitumor immune responses in the tumor tissues is the key to the success of cancer immunotherapy. Current strategies leverage altering the signals T cells sense in the tumor microenvironment (TME). Checkpoint inhibitor-based approaches block inhibitory signals such as PD-1 whereas cytokine-based therapies increase the level of immune-stimulatory cytokines such as IL-2. Besides extrinsic signals, the genetic circuit within T cells also participates in determining the nature and trajectory of antitumor immune responses. Here, we showed that efficacy of the IL33-based tumor immunotherapy was greatly enhanced in mice with T cell-specific Eomes deficiency. Mechanistically, we demonstrated that Eomes deficient mice had diminished proportions of exhausted/dysfunctional CD8+ T cells but increased percentages of tissue resident and stem-like CD8+ T cells in the TME. In addition, the IFNγ+TCF1+ CD8+ T cell subset was markedly increased in the Eomes deficient mice. We further demonstrated that Eomes bound directly to the transcription regulatory regions of exhaustion and tissue residency genes. In contrast to its role in inhibiting T cell immune responses at the tumor site, Eomes promoted generation of central memory T cells in the peripheral lymphoid system and memory recall responses against tumor growth at a distal tissue site. Finally, we showed that Eomes deficiency in T cells also resulted in increased efficacy of PD-1-blockade tumor immunotherapy. In all, our study indicates that Eomes plays a critical role in restricting prolonged T cell-mediated antitumor immune responses in the TME whereas promoting adaptive immunity in peripheral lymphoid organs.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lourdes Rocamora-Reverte ◽  
Franz Leonard Melzer ◽  
Reinhard Würzner ◽  
Birgit Weinberger

The immune system is a tightly regulated network which allows the development of defense mechanisms against foreign antigens and tolerance toward self-antigens. Regulatory T cells (Treg) contribute to immune homeostasis by maintaining unresponsiveness to self-antigens and suppressing exaggerated immune responses. Dysregulation of any of these processes can lead to serious consequences. Classically, Treg cell functions have been described in CD4+ T cells, but other immune cells also harbour the capacity to modulate immune responses. Regulatory functions have been described for different CD8+ T cell subsets, as well as other T cells such as γδT cells or NKT cells. In this review we describe the diverse populations of Treg cells and their role in different scenarios. Special attention is paid to the aging process, which is characterized by an altered composition of immune cells. Treg cells can contribute to the development of various age-related diseases but they are poorly characterized in aged individuals. The huge diversity of cells that display immune modulatory functions and the lack of universal markers to identify Treg make the expanding field of Treg research complex and challenging. There are still many open questions that need to be answered to solve the enigma of regulatory T cells.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Laurel A Grisanti ◽  
Anna Gumpert ◽  
Joshua Gorsky ◽  
Ashley A Repas ◽  
Erhe Gao ◽  
...  

Inflammatory responses are important for cardiac remodeling and tissue repair after myocardial infarction (MI). The sympathetic nervous system is known to regulate immune responses, in large part through the β2-adrenergic receptor (β2AR), however the influence of β2AR in regulating the inflammatory response following MI is unknown. Thus, to examine the contribution of β2AR on immune cells following MI, wild-type (WT) mice were irradiated and then received β2ARKO or WT control bone marrow (BM) transplants to create immune cell-specific knockout (KO) animals. Lack of β2AR expression in BM resulted in 100% mortality from cardiac rupture within two weeks of receiving MI, in contrast to their WT counterparts that had ∼20% death. Granulocyte populations were sequestered in the spleen of β2ARKO chimeric mice resulting in reductions in post-MI infiltration of monocyte/macrophage, neutrophil and mast cell populations into the heart. Additionally, alterations in chemokine receptor levels, particularly CCR2, on BM resulted in decreased cellular migration, and use of a CCR2 antagonist in vivo recapitulated the β2ARKO chimeric mouse phenotype following MI. Administration of β2AR agonists in vitro and in vivo increased CCR2 expression and BM migration while β2AR antagonists decreased CCR2 expression and increased splenic leukocyte retention in vivo . Use of pepducins as allosteric modulators of β2AR signaling demonstrated the importance of β-arrestin-mediated signaling in increasing CCR2 expression and responses. The impact of β2AR deletion on BM cell CCR2 expression and migration, splenic retention of leukocytes and reciprocal cardiac leukocyte infiltration following MI could be reversed via lentivirus-mediated β2AR rescue in the β2ARKO BM prior to transplantation. These results demonstrate the critical role of β2AR in the regulation of CCR2 expression on hematopoietic cells and its importance in mounting an immune response to promote healing following acute cardiac injury.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Mingli Xu ◽  
Izuru Mizoguchi ◽  
Noriko Morishima ◽  
Yukino Chiba ◽  
Junichiro Mizuguchi ◽  
...  

The interleukin (IL)-12 family, which is composed of heterodimeric cytokines including IL-12, IL-23, and IL-27, is produced by antigen-presenting cells such as macrophages and dendritic cells and plays critical roles in the regulation of helper T (Th) cell differentiation. IL-12 induces IFN- production by NK and T cells and differentiation to Th1 cells. IL-23 induces IL-17 production by memory T cells and expands and maintains inflammatory Th17 cells. IL-27 induces the early Th1 differentiation and generation of IL-10-producing regulatory T cells. In addition, these cytokines induce distinct immune responses to tumors. IL-12 activates signal transducers and activator of transcription (STAT)4 and enhances antitumor cellular immunity through interferon (IFN)- production. IL-27 activates STAT1, as does IFN- and STAT3 as well, and enhances antitumor immunity by augmenting cellular and humoral immunities. In contrast, although exogenously overexpressed IL-23 enhances antitumor immunity via memory T cells, endogenous IL-23 promotes protumor immunity through STAT3 activation by inducing inflammatory responses including IL-17 production.


1986 ◽  
Vol 164 (3) ◽  
pp. 709-722 ◽  
Author(s):  
T R Malek ◽  
G Ortega ◽  
C Chan ◽  
R A Kroczek ◽  
E M Shevach

The Ly-6 locus controls the expression and/or encodes for alloantigenic specificities found primarily on subpopulations of murine T and B lymphocytes. We have recently identified and characterized a new rat mAb, D7, that recognizes a nonpolymorphic Ly-6 specificity. After crosslinking by anti-Ig reagents or by Fc receptor-bearing accessory cells, mAb D7 could induce IL-2 production from T cell hybridomas, and in the presence of PMA could trigger a vigorous proliferative response in resting peripheral T cells. The addition of mAb D7 to cultures of antigen- and alloantigen-, but not mitogen-stimulated T cells resulted in a marked augmentation of the proliferative response. A number of other well-characterized mAbs to Ly-6 locus products could also stimulate a T cell proliferative response after crosslinking by anti-Ig and in the presence of PMA. These results strongly suggest that Ly-6 molecules may play a critical role in the T cell activation cascade, either as receptors for an unidentified soluble or cell-associated ligand or as transducing molecules that modulate signals initiated by antigen stimulation of the T3-Ti complex.


2018 ◽  
Vol 215 (9) ◽  
pp. 2413-2428 ◽  
Author(s):  
Krystin Deason ◽  
Ty Dale Troutman ◽  
Aakanksha Jain ◽  
Dilip K. Challa ◽  
Rajakumar Mandraju ◽  
...  

The toll-like receptor (TLR) and interleukin (IL)–1 family of receptors share several signaling components, including the most upstream adapter, MyD88. We previously reported the discovery of B cell adapter for phosphoinositide 3-kinase (BCAP) as a novel toll–IL-1 receptor homology domain–containing adapter that regulates inflammatory responses downstream of TLR signaling. Here we find that BCAP plays a critical role downstream of both IL-1 and IL-18 receptors to regulate T helper (Th) 17 and Th1 cell differentiation, respectively. Absence of T cell intrinsic BCAP did not alter development of naturally arising Th1 and Th17 lineages but led to defects in differentiation to pathogenic Th17 lineage cells. Consequently, mice that lack BCAP in T cells had reduced susceptibility to experimental autoimmune encephalomyelitis. More importantly, we found that BCAP is critical for IL-1R–induced phosphoinositide 3-kinase–Akt–mechanistic target of rapamycin (mTOR) activation, and minimal inhibition of mTOR completely abrogated IL-1β–induced differentiation of pathogenic Th17 cells, mimicking BCAP deficiency. This study establishes BCAP as a critical link between IL-1R and the metabolic status of activated T cells that ultimately regulates the differentiation of inflammatory Th17 cells.


2019 ◽  
Vol 20 (18) ◽  
pp. 4323 ◽  
Author(s):  
Salvo Danilo Lombardo ◽  
Emanuela Mazzon ◽  
Maria Sofia Basile ◽  
Giorgia Campo ◽  
Federica Corsico ◽  
...  

Tetraspanins are a conserved family of proteins involved in a number of biological processes including, cell–cell interactions, fertility, cancer metastasis and immune responses. It has previously been shown that TSPAN32 knockout mice have normal hemopoiesis and B-cell responses, but hyperproliferative T cells. Here, we show that TSPAN32 is expressed at higher levels in the lymphoid lineage as compared to myeloid cells. In vitro activation of T helper cells via anti-CD3/CD28 is associated with a significant downregulation of TSPAN32. Interestingly, engagement of CD3 is sufficient to modulate TSPAN32 expression, and its effect is potentiated by costimulation with anti-CD28, but not anti-CTLA4, -ICOS nor -PD1. Accordingly, we measured the transcriptomic levels of TSPAN32 in polarized T cells under Th1 and Th2 conditions and TSPAN32 resulted significantly reduced as compared with unstimulated cells. On the other hand, in Treg cells, TSPAN32 underwent minor changes upon activation. The in vitro data were finally translated into the context of multiple sclerosis (MS). Encephalitogenic T cells from Myelin Oligodendrocyte Glycoprotein (MOG)-Induced Experimental Autoimmune Encephalomyelitis (EAE) mice showed significantly lower levels of TSPAN32 and increased levels of CD9, CD53, CD82 and CD151. Similarly, in vitro-activated circulating CD4 T cells from MS patients showed lower levels of TSPAN32 as compared with cells from healthy donors. Overall, these data suggest an immunoregulatory role for TSPAN32 in T helper immune response and may represent a target of future immunoregulatory therapies for T cell-mediated autoimmune diseases.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1888 ◽  
Author(s):  
Jonadab E. Olguín ◽  
Itzel Medina-Andrade ◽  
Tonathiu Rodríguez ◽  
Miriam Rodríguez-Sosa ◽  
Luis I. Terrazas

In recent years, there has been a significant increase in the study of own and foreign human factors favoring the development of different types of cancer, including genetic and environmental ones. However, the fact that the immune response plays a fundamental role in the development of immunity and susceptibility to colorectal cancer (CRC) is much stronger. Among the many cell populations of the immune system that participate in restricting or favoring CRC development, regulatory T cells (Treg) play a major role in orchestrating immunomodulation during CRC. In this review, we established concrete evidence supporting the fact that Treg cells have an important role in the promotion of tumor development during CRC, mediating an increasing suppressive capacity which controls the effector immune response, and generating protection for tumors. Furthermore, Treg cells go through a process called “phenotypic plasticity”, where they co-express transcription factors that promote an inflammatory profile. We reunited evidence that describes the interaction between the different effector populations of the immune response and its modulation by Treg cells adapted to the tumor microenvironment, including the mechanisms used by Treg cells to suppress the protective immune response, as well as the different subpopulations of Treg cells participating in tumor progression, generating susceptibility during CRC development. Finally, we discussed whether Treg cells might or might not be a therapeutic target for an effective reduction in the morbidity and mortality caused by CRC.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3089-3089
Author(s):  
Gullu Topal Gorgun ◽  
Hiroto Ohguchi ◽  
Teru Hideshima ◽  
Yu-Tzu Tai ◽  
Noopur Raje ◽  
...  

Abstract The interaction of myeloma (MM) cells with bone marrow accessory cells induces genomic, epigenomic and functional changes which promote tumor development, progression, cell adhesion mediated-drug resistance (CAM-DR), and immune suppression. As in other cancers, bidirectional interaction between MM cells and surrounding cells regulates tumor development on the one hand, while transforming the BM microenvironment into a tumor promoting and immune suppressive milieu on the other. Recent developments in targeted therapies have indicated that generation of the most effective therapeutic strategies requires not only targeting tumor or stroma cells, but also methods to overcome blockade of anti-tumor immune responses. In addition to lymphoid immune suppressor cells such as regulatory T cells (Treg), distinct populations of myeloid cells such as myeloid derived suppressor cells (MDSC) can effectively block anti-tumor immune responses, thereby representing an important obstacle for immunotherapy. While MDSC are rare or absent in healthy individuals, increased numbers of MDSC have been identified in tumor sites and peripheral circulation. We have recently assessed the presence, frequency and functional characteristics of MDSC in patients with newly diagnosed or relapsed MM compared to MM patients with response and healthy donors. We have identified an increased distinct MDSC population (CD11b+CD14-HLA-DR-/lowCD33+CD15+) with tumor promoting and immune suppressive activity in both PB and BM of MM patients. Moreover, we have shown that lenalidomide (Len) and bortezomib (Bort), either alone or in combination, do not target MDSC in MM microenvironment. Moreover, Bort-induced cytotoxicity against MM cells is abrogated in the presence of MDSCs. In solid tumors, MDSC can be targeted by treatment with the multi-targeted receptor tyrosine kinase inhibitor Sunitinib (Sun), which is therefore an effective combination agent with immunotherapy. We therefore assessed whether MDSC-mediated MM growth and immune suppression in the BM and PB can be targeted by Sun, alone or in combination with Len. We first analysed effect of Sun, alone or in combination with Len, on the tumor promoting role of MDSC versus antigen presenting cells (APC) in MM. APC (CD14+HLA-DR+), mMDSC (monocytic CD11b+CD14+HLA-DR-/lowCD33+) and nMDSCs (neutrophilic CD11b+CD14-HLA-DR-/lowCD33+CD15+) were sorted by flow cytometry from MM-BM or PB and cultured with CFSE labeled MM cell lines (MM1.S, RPMI8226 and OPM1), in the absence or presence of Sun (0.5-3uM) and Len (1uM) alone or in combination. CFSE-flow analysis demonstrated that both mMDSC and nMDSC induced MM cell proliferation compared to MM cells alone (dividing cells 51%) or cultured with APC; and importantly, that Sun significantly inhibited MM cell proliferation even in the presence of MDSC (dividing cells 28%).Importantly, Sun combined with Len further enhanced MM cell cytotoxicity in the presence of MDSC. We further analysed effect of Sun on the BM stroma (BMSC)-induced MM cell growth/proliferation. Sun alone modestly inhibited BMSC-induced MM cell growth, and Len enhanced this effect. We next evaluated Sun effect on MDSC-mediated immune suppression in MM. APC, mMDSC, nMDSC were cultured with CFSE labeled autologous CD3 T cells stimulated with CD3/CD28 for 6 days, in the presence of Sun and Len alone or in combination. CFSE flow analysis demonstrated that Sun significantly reversed MDSC-induced suppression of immune effector cells (CD4 T cells, CD8 T cells and NKT cells). Finally, we determined the effect of Sun on MDSC-associated tumor promoting and immune suppressive cytokines. Flow cytometric intracellular cytokine profiling of MDSC in MM-BM and PB demonstrated that Sun increased IFNg expression, while decreasing TNFa and IL-6 expression in MDSC. Overall our data therefore show that MDSCs are increased in the MM microenvironment and play an important role in MM pathogenesis and immune suppression. They provide the rationale for clinical evaluation of Sunitinib to inhibit the tumor-promoting and immune-suppressive functions of MDSCs and improve patient outcome in MM. Disclosures: Hideshima: Acetylon: Consultancy. Tai:Onyx: Consultancy. Munshi:Celgene: Consultancy; Novartis: Consultancy; Millennium: Consultancy. Richardson:Novartis: Consultancy; Bristol-Myers Squibb: Consultancy; Johnson & Johnson: Consultancy; Celgene: Consultancy; Millenium: Consultancy. Anderson:acetylon: Equity Ownership; oncopep: Equity Ownership; sanofi aventis: Consultancy; gilead: Consultancy; onyx: Consultancy; celgene: Consultancy.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Masanori Abe ◽  
Yoichi Hiasa ◽  
Morikazu Onji

Many autoimmune diseases are driven by self-reactive T helper (Th) cells. A new population of effector CD4+T cells characterized by the secretion of interleukin (IL)-17, referred to as Th17 cells, has been demonstrated to be phenotypically, functionally, and developmentally distinct from Th1 and Th2 cells. Because the liver is known to be an important source of transforming growth factor-βand IL-6, which are cytokines that are crucial for Th17 differentiation, it is very likely that Th17 cells contribute to liver inflammation and autoimmunity. In contrast, another distinct subset of T cells, regulatory T cells (Treg), downregulate immune responses and play an important role in maintaining self-tolerance. In addition, there is a reciprocal relationship between Th17 cells and Tregs, in development and effector functions, and the balance between Th17 and Treg cells can affect the outcome of immune responses, particularly in autoimmune diseases. In this review, we will focus on the latest investigative findings related to Th17 cells in autoimmune liver disease.


Sign in / Sign up

Export Citation Format

Share Document