Stability and Control of Power Grids

Author(s):  
Tao Liu ◽  
Yue Song ◽  
Lipeng Zhu ◽  
David J. Hill

Power grids are critical infrastructure in modern society, and there are well-established theories for the stability and control of traditional power grids under a centralized paradigm. Driven by environmental and sustainability concerns, power grids are undergoing an unprecedented transition, with much more flexibility as well as uncertainty brought by the growing penetration of renewable energy and power electronic devices. A new paradigm for stability and control is under development that uses graph-based, data-based, and distributed analysis tools. This article surveys classic and novel results on the stability and control of power grids to provide a perspective on this both old and new subject. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
X. Cheng ◽  
J.M.A. Scherpen

Network systems consist of subsystems and their interconnections and provide a powerful framework for the analysis, modeling, and control of complex systems. However, subsystems may have high-dimensional dynamics and a large number of complex interconnections, and it is therefore relevant to study reduction methods for network systems. Here, we provide an overview of reduction methods for both the topological (interconnection) structure of a network and the dynamics of the nodes while preserving structural properties of the network. We first review topological complexity reduction methods based on graph clustering and aggregation, producing a reduced-order network model. Next, we consider reduction of the nodal dynamics using extensions of classical methods while preserving the stability and synchronization properties. Finally, we present a structure-preserving generalized balancing method for simultaneously simplifying the topological structure and the order of the nodal dynamics. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Mark W. Mueller ◽  
Seung Jae Lee ◽  
Raffaello D’Andrea

The design and control of drones remain areas of active research, and here we review recent progress in this field. In this article, we discuss the design objectives and related physical scaling laws, focusing on energy consumption, agility and speed, and survivability and robustness. We divide the control of such vehicles into low-level stabilization and higher-level planning such as motion planning, and we argue that a highly relevant problem is the integration of sensing with control and planning. Lastly, we describe some vehicle morphologies and the trade-offs that they represent. We specifically compare multicopters with winged designs and consider the effects of multivehicle teams. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Henrik Sandberg ◽  
Vijay Gupta ◽  
Karl H. Johansson

Cyber-vulnerabilities are being exploited in a growing number of control systems. As many of these systems form the backbone of critical infrastructure and are becoming more automated and interconnected, it is of the utmost importance to develop methods that allow system designers and operators to do risk analysis and develop mitigation strategies. Over the last decade, great advances have been made in the control systems community to better understand cyber-threats and their potential impact. This article provides an overview of recent literature on secure networked control systems. Motivated by recent cyberattacks on the power grid, connected road vehicles, and process industries, a system model is introduced that covers many of the existing research studies on control system vulnerabilities. An attack space is introduced that illustrates how adversarial resources are allocated in some common attacks. The main part of the article describes three types of attacks: false data injection, replay, and denial-of-service attacks. Representative models and mathematical formulations of these attacks are given along with some proposed mitigation strategies. The focus is on linear discrete-time plant models, but various extensions are presented in the final section, which also mentions some interesting research problems for future work. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Lidong Yang ◽  
Li Zhang

Magnetic microrobotics has undergone approximately 20 years of development, and the robotics and control communities have contributed significant theoretical and practical results to the motion control aspects of this field. This article introduces fundamental motion principles covering individual, multiagent, and swarm control and critically reviews the state of the art along with representative results. It then describes closed-loop control (an important part of this field), including the system structure, current motion planning and control methods, and current feedback approaches. As the development of motion control in magnetic microrobotics is far from complete, especially for swarm control, its current limitations are discussed. Finally, we conclude with several challenges and future research directions. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Samuel E. Otto ◽  
Clarence W. Rowley

A common way to represent a system's dynamics is to specify how the state evolves in time. An alternative viewpoint is to specify how functions of the state evolve in time. This evolution of functions is governed by a linear operator called the Koopman operator, whose spectral properties reveal intrinsic features of a system. For instance, its eigenfunctions determine coordinates in which the dynamics evolve linearly. This review discusses the theoretical foundations of Koopman operator methods, as well as numerical methods developed over the past two decades to approximate the Koopman operator from data, for systems both with and without actuation. We pay special attention to ergodic systems, for which especially effective numerical methods are available. For nonlinear systems with an affine control input, the Koopman formalism leads naturally to systems that are bilinear in the state and the input, and this structure can be leveraged for the design of controllers and estimators. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Andrew G. Alleyne ◽  
Christopher T. Aksland

This article outlines the importance of electrified mobility (e-mobility) in modern transport. One key goal of this review is to illustrate the role that control has played, and must continue to play, as e-mobility grows. The coordination of power in multiple modes (mechanical, electrical, and thermal) requires sophisticated controller algorithms. This review advocates for model-based approaches to control since there may not be readily available physical systems from which to gather data and do data-based control. A second goal of the article is to present methods for modeling these powertrain systems that are modular, scalable, flexible, and computationally efficient. A graph-based approach satisfies many of the desired criteria. The third goal is to review control approaches for these classes of systems and detail a hierarchical approach that makes trades across different domains of power. Optimization-based approaches are well suited to achieving the regulation and tracking goals, along with the minimization of costs and the satisfaction of constraints. Multiple examples, within this article and the references therein, support the presentation throughout. This field of e-mobility is rapidly growing, and control engineers are uniquely positioned to have an impact and lead many of the critical developments. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Mark K. Ho ◽  
Thomas L. Griffiths

Those designing autonomous systems that interact with humans will invariably face questions about how humans think and make decisions. Fortunately, computational cognitive science offers insight into human decision-making using tools that will be familiar to those with backgrounds in optimization and control (e.g., probability theory, statistical machine learning, and reinforcement learning). Here, we review some of this work, focusing on how cognitive science can provide forward models of human decision-making and inverse models of how humans think about others’ decision-making. We highlight relevant recent developments, including approaches that synthesize black box and theory-driven modeling, accounts that recast heuristics and biases as forms of bounded optimality, and models that characterize human theory of mind and communication in decision-theoretic terms. In doing so, we aim to provide readers with a glimpse of the range of frameworks, methodologies, and actionable insights that lie at the intersection of cognitive science and control research. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Tim Landgraf ◽  
Gregor H.W. Gebhardt ◽  
David Bierbach ◽  
Pawel Romanczuk ◽  
Lea Musiolek ◽  
...  

Biomimetic robots that replace living social interaction partners can help elucidate the underlying interaction rules in animal groups. Our review focuses on the use of interactive robots that respond dynamically to animal behavior as part of a closed control loop. We discuss the most influential works to date and how they have contributed to our understanding of animal sociality. Technological advances permit the use of robots that can adapt to the situations they face and the conspecifics they encounter, or robots that learn to optimize their social performance from a set of experiences. We discuss how adaptation and learning may provide novel insights into group sociobiology and describe the technical challenges associated with these types of interactive robots. This interdisciplinary field provides a rich set of problems to be tackled by roboticists, machine learning engineers, and control theorists. By cultivating smarter robots, we can usher in an era of more nuanced exploration of animal behavior. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 3, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3680
Author(s):  
Lasantha Meegahapola ◽  
Siqi Bu

Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to the clean and low-carbon renewable energy sources [...]


Sign in / Sign up

Export Citation Format

Share Document