Ebola: Lessons on Vaccine Development

2018 ◽  
Vol 72 (1) ◽  
pp. 423-446 ◽  
Author(s):  
Heinz Feldmann ◽  
Friederike Feldmann ◽  
Andrea Marzi

The West African Ebola virus (EBOV) epidemic has fast-tracked countermeasures for this rare, emerging zoonotic pathogen. Until 2013–2014, most EBOV vaccine candidates were stalled between the preclinical and clinical milestones on the path to licensure, because of funding problems, lack of interest from pharmaceutical companies, and competing priorities in public health. The unprecedented and devastating epidemic propelled vaccine candidates toward clinical trials that were initiated near the end of the active response to the outbreak. Those trials did not have a major impact on the epidemic but provided invaluable data on vaccine safety, immunogenicity, and, to a limited degree, even efficacy in humans. There are plenty of lessons to learn from these trials, some of which are addressed in this review. Better preparation is essential to executing an effective response to EBOV in the future; yet, the first indications of waning interest are already noticeable.

2021 ◽  
Vol 11 ◽  
Author(s):  
Anahita Fathi ◽  
Marylyn M. Addo ◽  
Christine Dahlke

Vaccines are one of the greatest public health achievements and have saved millions of lives. They represent a key countermeasure to limit epidemics caused by emerging infectious diseases. The Ebola virus disease crisis in West Africa dramatically revealed the need for a rapid and strategic development of vaccines to effectively control outbreaks. Seven years later, in light of the SARS-CoV-2 pandemic, this need has never been as urgent as it is today. Vaccine development and implementation of clinical trials have been greatly accelerated, but still lack strategic design and evaluation. Responses to vaccination can vary widely across individuals based on factors like age, microbiome, co-morbidities and sex. The latter aspect has received more and more attention in recent years and a growing body of data provide evidence that sex-specific effects may lead to different outcomes of vaccine safety and efficacy. As these differences might have a significant impact on the resulting optimal vaccine regimen, sex-based differences should already be considered and investigated in pre-clinical and clinical trials. In this Review, we will highlight the clinical observations of sex-specific differences in response to vaccination, delineate sex differences in immune mechanisms, and will discuss the possible resulting implications for development of vaccine candidates against emerging infections. As multiple vaccine candidates against COVID-19 that target the same antigen are tested, vaccine development may undergo a decisive change, since we now have the opportunity to better understand mechanisms that influence vaccine-induced reactogenicity and effectiveness of different vaccines.


Author(s):  
Elizabeth S. Higgs ◽  
Sheri A. Dubey ◽  
Beth A. G. Coller ◽  
Jakub K. Simon ◽  
Laura Bollinger ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Rajashri Bezbaruah ◽  
Pobitra Borah ◽  
Bibhuti Bhushan Kakoti ◽  
Nizar A. Al-Shar’I ◽  
Balakumar Chandrasekaran ◽  
...  

Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, arose at the end of 2019 as a zoonotic virus, which is the causative agent of the novel coronavirus outbreak COVID-19. Without any clear indications of abatement, the disease has become a major healthcare threat across the globe, owing to prolonged incubation period, high prevalence, and absence of existing drugs or vaccines. Development of COVID-19 vaccine is being considered as the most efficient strategy to curtail the ongoing pandemic. Following publication of genetic sequence of SARS-CoV-2, globally extensive research and development work has been in progress to develop a vaccine against the disease. The use of genetic engineering, recombinant technologies, and other computational tools has led to the expansion of several promising vaccine candidates. The range of technology platforms being evaluated, including virus-like particles, peptides, nucleic acid (DNA and RNA), recombinant proteins, inactivated virus, live attenuated viruses, and viral vectors (replicating and non-replicating) approaches, are striking features of the vaccine development strategies. Viral vectors, the next-generation vaccine platforms, provide a convenient method for delivering vaccine antigens into the host cell to induce antigenic proteins which can be tailored to arouse an assortment of immune responses, as evident from the success of smallpox vaccine and Ervebo vaccine against Ebola virus. As per the World Health Organization, till January 22, 2021, 14 viral vector vaccine candidates are under clinical development including 10 nonreplicating and four replicating types. Moreover, another 39 candidates based on viral vector platform are under preclinical evaluation. This review will outline the current developmental landscape and discuss issues that remain critical to the success or failure of viral vector vaccine candidates against COVID-19.


Author(s):  
Kenneth Lundstrom

Alphaviruses, flaviviruses, measles viruses and rhabdoviruses are enveloped single-stranded RNA viruses, which have been engineered as expression vector systems for recombinant protein expression and vaccine development. Due to the presence of non-structural genes encoding the replicase complex, a 200,000-fold amplification of viral RNA occurs in the cytoplasm of infected cells providing extreme transgene expression levels, which is why they are named self-replicating RNA viruses. Expression of surface proteins of pathogens causing infectious disease and tumor antigens provide the basis for vaccine development against infectious diseases and cancer. The self-replicating RNA viral vectors can be administered as replicon RNA, recombinant viral particles, or layered DNA/RNA replicons. Self-replicating RNA viral vectors have been applied for vaccine development against influenza virus, HIV, hepatitis B virus, human papilloma virus, Ebola virus and recently coronaviruses, especially SARS-CoV-2 the causative agent of the COVID-19 pandemic. Measles virus and rhabdovirus vector-based SARS-CoV-2 vaccine candidates have been subjected to clinical trials. Moreover, RNA vaccine candidates based on self-amplifying alphaviruses have also been evaluated in clinical settings. Various cancers such as brain, breast, lung, ovarian, prostate cancer and melanoma have also been targeted for vaccine development. Robust immune responses and protection have been demonstrated in animal models. Clinical trials have shown good safety and target-specific immune responses. Ervebo, the VSV-based vaccine against Ebola virus disease has been approved for human use.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 649 ◽  
Author(s):  
Swati Jain ◽  
Himanshu Batra ◽  
Poonam Yadav ◽  
Subhash Chand

With a death toll of over one million worldwide, the COVID-19 pandemic caused by SARS-CoV-2 has become the most devastating humanitarian catastrophe in recent decades. The fear of acquiring infection and spreading to vulnerable people has severely impacted society’s socio-economic status. To put an end to this growing number of infections and deaths as well as to switch from restricted to everyday living, an effective vaccine is desperately needed. As a result, enormous efforts have been made globally to develop numerous vaccine candidates in a matter of months. Currently, over 30 vaccine candidates are under assessment in clinical trials, with several undergoing preclinical studies. Here, we reviewed the major vaccine candidates based on the specific vaccine platform utilized to develop them. We also discussed the immune responses generated by these candidates in humans and preclinical models to determine vaccine safety, immunogenicity, and efficacy. Finally, immune responses induced in recovered COVID-19 patients and their possible vaccine development implications were also briefly reviewed.


2020 ◽  
Vol 1 (2) ◽  
pp. 3-8
Author(s):  
Tapas Pramanik ◽  
Tapas Kumar Sur

Novel corona virus disease (COVID-19), since its emergence in November 2019, took the toll of a huge number of human lives. It is a β-corona-virus also known as SARS-CoV2. The safest and most effective way to prevent the disease is definitely vaccination amongst the large population. To the best of our knowledge, more than 200 vaccine candidates for COVID-19 were developed by the scientists of research institutions and pharmaceutical companies and nearly 52 candidates were in human trials. Till now, only 15 vaccines are being offered to the general population in the world, out of which 2 vaccines are RNA, 6 are conventional inactivated, 5 viral vector and 2 protein subunit. Here, we tried to unfold the events and efforts behind the successes of new innovations of COVID-19 vaccines, the world has achieved yet.


2020 ◽  
Vol 17 ◽  
Author(s):  
Anam Naz ◽  
Tahreem Zaheer ◽  
Hamza Arshad Dar ◽  
Faryal Mehwish Awan ◽  
Ayesha Obaid ◽  
...  

Background: Helicobacter pylori infection and its treatment still remains a challenge to human health worldwide. A variety of antibiotics and combination therapies are currently used to treat H. pylori induced ulcers and carcinoma; however, no effective treatment is available to eliminate the pathogen from the body. Additionally, antibiotic resistance is also one of the main reasons for prolonged and persistent infection. Aim of the study: Until new drugs are available for this infection, vaccinology seems the only alternative opportunity to exploit against H. pylori induced diseases. Methods: Multiple epitopes prioritized in our previous study have been tested for their possible antigenic combinations, and results in 169-mer and 183-mer peptide vaccines containing the amino acid sequences of 3 and 4 epitopes respectively, along with adjuvant (Cholera Toxin Subunit B adjuvant at 5’ end) and linkers (GPGPG and EAAAK). Results: Poly-epitope proteins proposed as potential vaccine candidates against H. pylori include SabAHP0289-Omp16-VacA (SHOV), VacA-Omp16-HP0289-FecA (VOHF), VacA-Omp16-HP0289-SabA (VOHS), VacA-Omp16-HP0289-BabA (VOHB), VacA-Omp16-HP0289-SabA-FecA (VOHSF), VacAOmp16-HP0289-SabA-BabA (VOHSB) and VacA-Omp16-HP0289-BabA-SabA (VOHBS). Structures of these poly-epitope peptide vaccines have been modelled and checked for their affinity with HLA alleles and receptors. These proposed poly-epitope vaccine candidates bind efficiently with A2, A3, B7 and DR1 superfamilies of HLA alleles. They can also form stable and significant interactions with Toll-like receptor 2 and Toll-like receptor 4. Conclusion: Results suggest that these multi-epitopic vaccines can elicit a significant immune response against H. pylori and can be tested further for efficient vaccine development.


Author(s):  
Seth C Kalichman ◽  
Lisa A Eaton ◽  
Valerie A Earnshaw ◽  
Natalie Brousseau

Abstract Background The unprecedented rapid development of COVID-19 vaccines has faced SARS-CoV- (COVID-19) vaccine hesitancy, which is partially fueled by the misinformation and conspiracy theories propagated by anti-vaccine groups on social media. Research is needed to better understand the early COVID-19 anti-vaccine activities on social media. Methods This study chronicles the social media posts concerning COVID-19 and COVID-19 vaccines by leading anti-vaccine groups (Dr Tenpenny on Vaccines, the National Vaccine Information Center [NVIC] the Vaccination Information Network [VINE]) and Vaccine Machine in the early months of the COVID-19 pandemic (February–May 2020). Results Analysis of 2060 Facebook posts showed that anti-vaccine groups were discussing COVID-19 in the first week of February 2020 and were specifically discussing COVID-19 vaccines by mid-February 2020. COVID-19 posts by NVIC were more widely disseminated and showed greater influence than non-COVID-19 posts. Early COVID-19 posts concerned mistrust of vaccine safety and conspiracy theories. Conclusion Major anti-vaccine groups were sowing seeds of doubt on Facebook weeks before the US government launched its vaccine development program ‘Operation Warp Speed’. Early anti-vaccine misinformation campaigns outpaced public health messaging and hampered the rollout of COVID-19 vaccines.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 608
Author(s):  
Danielle Burton ◽  
Suzanne Lenhart ◽  
Christina J. Edholm ◽  
Benjamin Levy ◽  
Michael L. Washington ◽  
...  

The 2014–2016 West African outbreak of Ebola Virus Disease (EVD) was the largest and most deadly to date. Contact tracing, following up those who may have been infected through contact with an infected individual to prevent secondary spread, plays a vital role in controlling such outbreaks. Our aim in this work was to mechanistically represent the contact tracing process to illustrate potential areas of improvement in managing contact tracing efforts. We also explored the role contact tracing played in eventually ending the outbreak. We present a system of ordinary differential equations to model contact tracing in Sierra Leonne during the outbreak. Using data on cumulative cases and deaths, we estimate most of the parameters in our model. We include the novel features of counting the total number of people being traced and tying this directly to the number of tracers doing this work. Our work highlights the importance of incorporating changing behavior into one’s model as needed when indicated by the data and reported trends. Our results show that a larger contact tracing program would have reduced the death toll of the outbreak. Counting the total number of people being traced and including changes in behavior in our model led to better understanding of disease management.


Sign in / Sign up

Export Citation Format

Share Document