Photoassisted Electrodeposition of Cuprous Oxide Thin Films

2021 ◽  
Vol 105 (1) ◽  
pp. 441-452
Author(s):  
Katharina Mairhofer ◽  
Bettina Kipper-Pires ◽  
Gerhard Leitner ◽  
Guenter Fafilek

Well-defined cuprous oxide (Cu2O) thin films can be electrodeposited from an electrolyte containing copper (II) sulfate, lactic acid and sodium hydroxide. As Cu2O is a p-type semiconductor, it is possible to accelerate the process through illumination with light of sufficient energy (>2.1eV). Cyclic voltammetry and transient potentiostatic measurements were performed in a three-electrode setup with copper metalized wafers as a working electrode. Illumination was performed through the electrolyte, therefore absorption of light by the electrolyte had to be taken into consideration. Potentiostatic measurements with a blue LED as a light source have shown an tenfold increase in layer thickness in comparison to depositions without additional illumination. The deposited films were investigated with SEM analysis.

2016 ◽  
Vol 213 (9) ◽  
pp. 2296-2302 ◽  
Author(s):  
João Resende ◽  
Carmen Jiménez ◽  
Ngoc Duy Nguyen ◽  
Jean-Luc Deschanvres

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Abderrahime Sekkat ◽  
Viet Huong Nguyen ◽  
César Arturo Masse de La Huerta ◽  
Laetitia Rapenne ◽  
Daniel Bellet ◽  
...  

AbstractCu2O is a promising p-type semiconductor for low-cost photovoltaics and transparent optoelectronics. However, low-cost and low-temperature fabrication of Cu2O films with good transport properties remains challenging, thus limiting their widespread adoption in devices. Here, we report Cu2O thin films of 20–80 nm thickness with hole mobility up to 92 cm2V−1s−1 using atmospheric-pressure spatial atomic layer deposition at temperatures below 260 °C, from a copper (I) hexafluoro-2,4-pentanedionate cyclooctadiene precursor. Raman spectroscopy indicates the presence of copper split vacancies and shows that the high hole mobility can be correlated to a low concentration of shallow acceptor defects. The optical bandgap of deposited films can be tuned between 2.08 eV and 2.5 eV, depending on the deposition temperature. All-oxide semitransparent Cu2O/ZnO solar harvesters are fabricated, showing efficiency values comparable to devices that incorporate much thicker Cu2O layers. Our work provides a promising approach towards cost-efficient, all-oxide solar harvesters, and for other (opto)electronic devices.


2018 ◽  
Vol 24 (8) ◽  
pp. 5866-5871 ◽  
Author(s):  
G Balakrishnan ◽  
J. S. Ram Vinoba ◽  
R Rishaban ◽  
S Nathiya ◽  
O. S. Nirmal Ghosh

Nickel oxide (NiO) thin films were deposited on glass substrates using the RF magnetron sputtering technique at room temperature. The Argon and oxygen flow rates were kept constant at 10 sccm and 5 sccm respectively. The films were annealed at various temperatures (RT-300 °C) and its influence on the microstructural, optical and electrical properties were investigated. The X-ray diffraction (XRD) investigation of NiO films indicated the polycrystallinity of the films with the (111), (200) and (220) reflections corresponding to the cubic structure of NiO films. The crystallite size of NiO films was in the range ~4–14 nm. The transmittance of the films increased from 20 to 75% with increasing annealed temperature. The optical band gap of the films was 3.6–3.75 eV range for the as-deposited and annealed films. The Hall effect studies indicated the p-type conductivity of films and the film annealed at 300 °C showed higher carrier concentration (N), high conductivity (σ) and high mobility (μ) compared to other films. These NiO films can be used as a P-type semiconductor material in the devices require transparent conducting films.


1989 ◽  
Vol 4 (4) ◽  
pp. 923-929 ◽  
Author(s):  
Richard J. Phillips ◽  
Michael J. Shane ◽  
Jay A. Switzer

Thallium (III) oxide is a degenerate n-type semiconductor with high optical transparency and electrical conductivity. Films of thallium(III) oxide can be electrochemically deposited onto conducting and p-type semiconducting substrates, and photoelectrochemically deposited onto n-type semiconducting substrates. Films deposited at currents below the mass transport limit onto platinum or stainless steel were columnar, and the current efficiency on stainless steel was 103 ±2%. Dendritic films were deposited at mass-transport-limited currents. Films were deposited with thicknesses ranging from 0.1 μm on n-silicon, to 170 μm on stainless steel. The photoelectrochemically deposited films were “direct-written” onto n-silicon, since the material was deposited only at irradiated portions of the electrode. Thin films were grown by irradiating the n-silicon with 450 nm monochromatic light, since the light was strongly absorbed by the thallium(III) oxide. The most uniform thin films were deposited when the n-silicon was initially irradiated with a short pulse of high intensity light. The pulse apparently promoted instantaneous nucleation of a high density of thallium(III) oxide nuclei.


2013 ◽  
Vol 690-693 ◽  
pp. 1659-1663
Author(s):  
Hai Fang Zhou ◽  
Xiao Hu Chen

The preparation and characterization of CuInS2 thin films on ITO glass substrates prepared by one-step electrodeposition have been reported. Samples were characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results indicate that CuInS2 is the major phase for the film deposited at -1.0 V, after annealing at 550°C in sulfur atmosphere, and the sample is Cu-rich and p-type semiconductor. Additionally, the energy band gap and carrier concentration for the sample were found to be 1.43 eV and 4.20×1017 cm−3, respectively. Furthermore, the maximum photocurrent density of the sample was found to be -1.15 mA/cm2 under 255 lx illumination, the sample shows the photo-enhancement effect.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Hoai Phuong Pham ◽  
Thanh Giang Le Thuy ◽  
Quang Trung Tran ◽  
Hoang Hung Nguyen ◽  
Huynh Tran My Hoa ◽  
...  

Crystalline structure and optoelectrical properties of silver-doped tin monoxide thin films with different dopant concentrations prepared by DC magnetron sputtering are investigated. The X-ray diffraction patterns reveal that the tetragonal SnO phase exhibits preferred orientations along (101) and (110) planes. Our results indicate that replacing Sn2+ in the SnO lattice with Ag+ ions produces smaller-sized crystallites, which may lead to enhanced carrier scattering at grain boundaries. This causes a deterioration in the carrier mobility, even though the carrier concentration improves by two orders of magnitude due to doping. In addition, the Ag-doped SnO thin films show a p-type semiconductor behavior, with a direct optical gap and decreasing transmittance with increasing Ag dopant concentration.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Huu Phuc Dang ◽  
Quang Ho Luc ◽  
Tran Le ◽  
Van Hieu Le

Transparent Sb-doped tin oxide (ATO) thin films were fabricated on quartz glass substrates via a mixed (SnO2+ Sb2O3) ceramic target using direct current (DC) magnetron sputtering in ambient Ar gas at a working pressure of 2 × 10−3 torr. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Hall-effect, and UV-vis spectra measurements were performed to characterize the deposited films. The substrate temperature of the films was investigated in two ways: (1) films were annealed in Ar ambient gas after being deposited at room temperature or (2) they were deposited directly at different temperatures. The first process for fabricating the ATO films was found to be easier than the second process. The deposited films showed p-type electrical properties, a polycrystalline tetragonal rutile structure, and their average transmittance was greater than 80% in the visible light range at the optimum annealing temperature of 500°C. The best electrical properties of the film were obtained on a 10 wt% Sb2O3-doped SnO2target with a resistivity, hole concentration, and Hall mobility of 0.55 Ω·cm, 1.2 × 1019 cm−3, and 0.54 cm2V−1s−1, respectively.


Sign in / Sign up

Export Citation Format

Share Document