scholarly journals Oxygen Evolution on Iron Oxide Nanoparticles: The Impact of Crystallinity and Size on the Overpotential

2021 ◽  
Vol 168 (3) ◽  
pp. 034518
Author(s):  
Zhongbin Zhuang ◽  
Stephen A. Giles ◽  
Glen R. Jenness ◽  
Reza Abbasi ◽  
Xi Chen ◽  
...  
2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2016 ◽  
Vol 14 (1) ◽  
Author(s):  
Freya Joris ◽  
Daniel Valdepérez ◽  
Beatriz Pelaz ◽  
Stefaan J. Soenen ◽  
Bella B. Manshian ◽  
...  

Biologija ◽  
2017 ◽  
Vol 63 (1) ◽  
Author(s):  
Meheri Askary ◽  
Seyed Mehdi Talebi ◽  
Fariba Amini ◽  
Ali Dousti Balout Bangan

The progress of nanotechnology presents many nanoparticles that are important in medicine, agriculture and industry. Quickly and entirely absorbed by plants, nano-compounds and remedy their nutrient deficiency and satisfy this need. Iron oxide nanoparticles with suitable surface chemistry can be used as a rich source of iron for plants due to its gradual release of Fe in a wide pH range (pH 3 to 11). The present study investigated the impact of iron oxide nanoparticles (Fe2O3NPs in 0, 10, 20 and 30  µM concentrations) on physiological parameters of peppermint (Mentha piperita) under salt stress (0, 50, 100 and 150 mM concentrations of NaCl). Fe2O3NPs caused increases in leaf fresh weight and dry weight, phosphorus, potassium, iron, zinc, and calcium contents of the peppermint under salinity stress but did not have an effect on the sodium element. 30 µM concentration of Fe2O3NP was more impressive. Lipid peroxidation and proline contents of the peppermint under salinity decreased significantly by applying Fe2O3NPs. The maximum activities of total antioxidant enzymes (I %), catalase, superoxide dismutase, and guailcol peroxidase were observed in plants treated with 150 mM of NaCl, but application of Fe2O3NPs declined these antioxidant activities. The results suggest that the appropriate concentration of iron nanoparticles could be used for stress resistance of the peppermint.


2020 ◽  
Vol 21 (5) ◽  
pp. 1613 ◽  
Author(s):  
Amlan Chakraborty ◽  
Simon Royce ◽  
Cordelia Selomulya ◽  
Magdalena Plebanski

Despite developments in pulmonary radiotherapy, radiation-induced lung toxicity remains a problem. More sensitive lung imaging able to increase the accuracy of diagnosis and radiotherapy may help reduce this problem. Super-paramagnetic iron oxide nanoparticles are used in imaging, but without further modification can cause unwanted toxicity and inflammation. Complex carbohydrate and polymer-based coatings have been used, but simpler compounds may provide additional benefits. Herein, we designed and generated super-paramagnetic iron oxide nanoparticles coated with the neutral natural dietary amino acid glycine (GSPIONs), to support non-invasive lung imaging and determined particle biodistribution, as well as understanding the impact of the interaction of these nanoparticles with lung immune cells. These GSPIONs were characterized to be crystalline, colloidally stable, with a size of 12 ± 5 nm and a hydrodynamic diameter of 84.19 ± 18 nm. Carbon, Hydrogen, Nitrogen (CHN) elemental analysis estimated approximately 20.2 × 103 glycine molecules present per nanoparticle. We demonstrated that it is possible to determine the biodistribution of the GSPIONs in the lung using three-dimensional (3D) ultra-short echo time magnetic resonance imaging. The GSPIONs were found to be taken up selectively by alveolar macrophages and neutrophils in the lung. In addition, the GSPIONs did not cause changes to airway resistance or induce inflammatory cytokines. Alveolar macrophages and neutrophils are critical regulators of pulmonary inflammatory diseases, including allergies, infections, asthma and chronic obstructive pulmonary disease (COPD). Therefore, pulmonary Magnetic Resonance (MR) imaging and preferential targeting of these lung resident cells by our nanoparticles offer precise imaging tools, which can be utilized to develop precision targeted radiotherapy as well as diagnostic tools for lung cancer, thereby having the potential to reduce the pulmonary complications of radiation.


2021 ◽  
Vol 11 (5) ◽  
pp. 2437
Author(s):  
Zhannat Ashikbayeva ◽  
Arman Aitkulov ◽  
Alexey Wolf ◽  
Alexander Dostovalov ◽  
Aida Amantayeva ◽  
...  

Thermal ablation (TA) is known as an alternative therapy to surgery to treat tumors. However, TA-based therapy requires advanced approaches in order to prevent causing damage to healthy tissue around the tumor and selectively target the desired area. Nanoparticles are considered as a promising tool in biomedicine to fulfill these requirements. This study was carried out in order to analyze the effect of iron oxide nanoparticles on the temperature increment during radiofrequency ablation therapy of porcine liver. In addition, this research aimed to experimentally evaluate the impact of two solvents such as agarose and chitosan on the temperature change, when magnetic nanoparticles were dispersed in them. The iron oxide nanoparticles were synthesized by the solvothermal method demonstrating the magnetic properties by acting to the external magnetic field. To increase the local heat superparamagnetic nanoparticles (iron oxide magnetic nanoparticle (IONPs)) of the average size of 20 nm in size and the concentrations from 1 to 10 mg/mL of MNPs with a step size of 1 mg/mL were tested in 10 replicates for each concentration and solvent. Moreover, the temperature changes for dry liver, and 0 mg/mL concentration was checked for calibration and reference purposes. As a sensing system, advanced 16-FBG optical fiber sensors connected to an interrogator were employed allowing the temperature change to be monitored accurately in real time. A maximum temperature of about 142 °C was recorded by a 5 mg/mL concentration of iron oxide nanoparticles dispersed in the agarose solvent.


2018 ◽  
Vol 53 (1) ◽  
pp. 74-78 ◽  
Author(s):  
Dubravka Nikolovski ◽  
Marta Jeremic ◽  
Jovana Paunovic ◽  
Danijela Vucevic ◽  
Tatjana Radosavljevic ◽  
...  

Abstract Recent findings have suggested that iron oxide nanoparticles (IONPs) have some exceptional chemical characteristics which make them useful in both experimental physiology and cell biology research. These nanoparticles might be applied as drug delivery systems for anti-cancer and other medications. Also, IONPs might be a valuable part of many novel bioassays in various fundamental medical fields. In recent years, several studies have indicated that IONPs may have certain cytotoxic and genotoxic potential in living systems. During in vitro conditions, IONPs might induce generation of reactive oxygen species and cause oxidative stress in some cell populations. The toxicity of IONPs is not yet fully understood, and additional research is needed to confirm if IONPs have detrimental effects on human health. This short article focuses on the recent developments and trends in the fields of nanomedicine and nanobiology regarding iron oxide nanomaterials and their application in fundamental medical disciplines such as experimental physiology. We discuss our previously published works on structural effects of IONPs and other metallic nanoparticles on cell nucleus in in vitro conditions. We also describe our recent findings regarding the impact of IONPs on certain biophysical properties of subcellular components.


Sign in / Sign up

Export Citation Format

Share Document