Determination of Uric Acid in Biological Fluids by Ceria Nanoparticles Doped Reduced Graphene Oxide Nanocomposite Voltammetric Sensor

Author(s):  
Peihong Deng ◽  
Jinxia Feng ◽  
Jingyun Xiao ◽  
Yanping Wei ◽  
Jinsong Zuo ◽  
...  

Abstract High levels of uric acid (UA) in the human body usually cause diabetes, hypertension and atherosclerosis, kidney diseases, and neurological diseases. Hence, it is important to develop sensitive methods for UA determination. In this paper, nanocomposite composed of ceria nanoparticles and reduced graphene was successfully modified on the surface of glassy carbon electrode (ceria NPs-rGO/GCE) by a simple electroreduction method. The morphology, structure and property of the ceria NPs-rGO/GCE was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrocatalytic activity of the ceria NPs-rGO/GCE for uric acid (UA) oxidation was studied in detail. The results showed that the ceria NPs-rGO/GCE exhibited excellent selectivity and high sensitivity for UA detection. In 0.05 M H2SO4 solution, a linear range of 0.02-20 M and a low detection limit of 8.0 nM of UA were obtained on the ceria NPs-rGO/GCE. This developed method was successfully applied for the detection of UA in human serum and urine samples, and its recoveries reached 95.8%-105.0%.

2019 ◽  
Vol 97 (2) ◽  
pp. 140-146
Author(s):  
Tian Gan ◽  
Zhikai Wang ◽  
Mengru Chen ◽  
Wanqiu Fu ◽  
Haibo Wang ◽  
...  

In this work, the Ag@Cu particles with yolk–shell nanostructure was prepared by facile solvothermal method, which was modified on glassy carbon electrode (GCE) to fabricate electrochemical sensor for the convenient and fast determination of p-aminobenzoic acid (PABA). The surface morphology and electrochemical properties of the as-prepared Ag@Cu nanocomposite modified electrode were characterized by scanning electron microscopy, transmission electron microscopy, chronocoulometry, and electrochemical impedance spectroscopy. Further, the electrochemical sensing of PABA was performed on the Ag@Cu/GCE using cyclic voltammetry and differential pulse voltammetry techniques, showing high catalytic activity. Under the optimal conditions, the sensor exhibited a wide linear range, high sensitivity, and low detection limit of 0.315 μmol/L for PABA. The developed sensor was also successfully applied for PABA detection in anesthetic and cosmetics with satisfactory results.


2020 ◽  
Vol 20 (8) ◽  
pp. 4854-4859 ◽  
Author(s):  
Lei Chen ◽  
Xu Chen ◽  
Yaqiong Wen ◽  
Bixia Wang ◽  
Yangchen Wu ◽  
...  

Nitrogen-enriched reduced graphene oxide electrode material can be successfully prepared through a simple hydrothermal method. The morphology and microstructure of ready to use electrode material is measured by field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Physical characterizations revealed that nitrogen-enriched reduced graphene oxide electrode material possessed high specific surface area of 429.6 m2 · g−1, resulting in high utilization of electrode materials with electrolyte. Electrochemical performance of nitrogen-enriched reduced graphene oxide electrode was also investigated by cyclic voltammetry (CV), galvanostatic charge/discharge measurements and electrochemical impedance spectroscopy (EIS) in aqueous in 6 M KOH with a three-electrode system, which displayed a high specific capacitance about 223.5 F · g−1 at 1 mV · s−1. More importantly, nitrogenenriched reduced graphene oxide electrode exhibited outstanding stability with 100% coulombic efficiency and with no specific capacitance loss under 2 A · g−1 after 10000 cycles. The supercapacitive behaviors indicated that nitrogen-enriched reduced graphene oxide can be a used as a promising electrode for high-performance super-capacitors.


2021 ◽  
pp. 295-308 ◽  
Author(s):  
Jagdish C. Bhangoji ◽  
Srikant Sahoo ◽  
Ashis Kumar Satpati ◽  
Suresh S. Shendage

A simple and environment friendly protocol has been developed for the synthesis of Ag nanoparticles (AgNPs) supported on reduced graphene oxide (rGO) with copper metal foil as reductant. The prepared AgNPs-rGO, nanocomposite was characterized by various analytical techniques such as scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD). The electrochemical performance of the material has been evaluated using cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The average crystallite size of AgNPs is found to be 32.34 nm. The application of prepared electrocatalyst (AgNPs-rGO) as a non-enzymatic sensor is examined through the modified electrode with the synthesized AgNPs-rGO. The sensor showed excellent performance toward H2O2 reduction with a sensitivity of 12.73 µA.cm-2.mM-1, with a linear dynamic range of 1.5 µM – 100 mM, and the detection limit of 1.90 µM (S/N = 3). Furthermore, the sensor displayed high sensitivity, reproducibility, stability and selectivity for the determination of H2O2. The results demonstrated that AgNPs-rGO has potential applications as sensing material for quantitative determination of H2O2.


2020 ◽  
Vol 20 (5) ◽  
pp. 3148-3156 ◽  
Author(s):  
S. Nehru ◽  
Subramanian Sakthinathan ◽  
P. Tamizhdurai ◽  
Te-Wei Chiu ◽  
K. Shanthi

In the present work, a reduced graphene oxide and multiwalled carbon nanotube (RGO/MWCNTFe3O4) composite decorated with Fe3O4 magnetic nanoparticles was prepared as an electrochemical sensor. The surface morphology of the prepared composite was identified by scanning electron microscopy and X-ray diffraction. The electrochemical properties of the GCE/RGO/MWCNT-Fe3O4 electrode were investigated by electrochemical impedance spectroscopy, cyclic voltammetry and amperometry. The GCE/RGO/MWCNT-Fe3O4 electrode exhibited higher electrocatalytic performance towards the oxidation of hydrazine. In the optimal conditions, the GCE/RGO/MWCNT-Fe3O4 electrode showed a wide linear range (0.15–220 μM), low limit of detection (LOD) (0.75 μM), and high sensitivity (2.868 μA μM−1 cm−2). The prepared GCE/RGO/MWCNT-Fe3O4 electrode also had excellent repeatability, selectivity, and reproducibility. The practical application of the electrode was confirmed with various spiked water samples and demonstrated acceptable recovery.


Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 84 ◽  
Author(s):  
Aihua Jing ◽  
Gaofeng Liang ◽  
Yixin Yuan ◽  
Wenpo Feng

The quantification of ascorbic acid (AA), dopamine (DA), and uric acid (UA) has been an important area of research, as these molecules’ determination directly corresponds to the diagnosis and control of diseases of nerve and brain physiology. In our research, graphene oxide (GO) with nano pores deposited with gold nanoparticles were self-assembled to form three-dimensional (3D) Au/holey-graphene oxide (Au/HGO) composite structures. The as-prepared 3DAu/HGO composite structures were characterized for their structures by X-ray diffraction, Raman spectrum, scanning electron microscopy, and transmission electron microscopy coupled with cyclic voltammograms. Finally, the proposed 3DAu/HGO displayed high sensitivity, excellent electron transport properties, and selectivity for the simultaneous electrochemical determination of AA, DA and UA with linear response ranges of 1.0–500 μM, 0.01–50 μM and 0.05–50 μM respectively. This finding paves the way for graphene applications as a biosensor for detecting three analytes in human serum.


2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Vinay Narwal ◽  
Neelam Yadav ◽  
Manisha Thakur ◽  
Chandra S. Pundir

The nanoparticles (NPs) of hemoglobin (Hb) were prepared by desolvation method and characterized by transmission electron microscopy (TEM), UV spectroscopy and Fourier-transform IR (FTIR) spectroscopy. An amperometric H2O2 biosensor was constructed by immobilizing HbNPs covalently on to a polycrystalline Au electrode (AuE). HbNPs/AuE were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) before and after immobilization of HbNPs. The HbNPs/AuE showed optimum response within 2.5 s at pH 6.5 in 0.1 M sodium phosphate buffer (PB) containing 100 μM H2O2 at 30°C, when operated at –0.2 V against Ag/AgCl. The HbNPs/AuE exhibited Vmax of 5.161 ± 0.1 μA cm−2 with apparent Michaelis-Menten constant (Km) of 0.1 ± 0.01 mM. The biosensor showed lower detection limit (1.0 μM), high sensitivity (129 ± 0.25 μA cm−2 mM−1) and wider linear range (1.0–1200 μM) for H2O2 as compared with earlier biosensors. The analytical recoveries of added H2O2 in serum (0.5 and 1.0 μM) were 97.77 and 98.01% respectively, within and between batch coefficients of variation (CV) were 3.16 and 3.36% respectively. There was a good correlation between sera H2O2 values obtained by standard enzymic colorimetric method and the present biosensor (correlation coefficient, R2 =0.99). The biosensor measured H2O2 level in sera of apparently healthy subjects and persons suffering from diabetes type II. The HbNPs/AuE lost 10% of its initial activity after 90 days of regular use, when stored dry at 4°C.


2020 ◽  
Vol 16 (8) ◽  
pp. 996-1009
Author(s):  
Khadijeh Ghanbari ◽  
Ashraf Sivandi

Background: Hypertension is a major risk for morbidity and mortality, while hypertension is associated with cardiovascular disease and organ damage. Recent research efforts have focused on the development of highly selective angiotensin receptor blockers. In which losartan (LOS) is considered as a new generation of an effective oral drug product against arterial hypertension. Therefore, the determination of drugs in biological fluids, pharmaceuticals (tablets), and wastewater is of critical importance for clinical applications, forensics, quality control, and environmental protection that call for the development of analytical methods. Many ranges of methods such as spectroscopic methods and chromatographic techniques have been developed to determine LOS in pharmaceutical formulations and biological fluids. However, there are crucial interference problems in these methods. For these reasons, more sensitive, desirable, portable, low-cost, simple, and selective nanocomposite-based sensors are needed in terms of health safety. Nanomaterials such as reduced graphene oxide, chitosan, and metal nanoparticles are used to improve the sensitivity in the development of electrochemical sensors. Objective: In this study, a novel reduced graphene oxide (RGO), chitosan (Chit), gold (Au), and zinc oxide (ZnO) nanocomposite (RGO/Chitosan/Au/ZnO) was synthesized and used to develop a sensitive and efficient electrochemical sensor for LOS detection. Methods: Modification of electrode by RGO/Chit/Au/ZnO nanocomposite was performed in four stages with GO (at -2.0 V for 150 s), Chitosan (at -3.0 V for 300 s), Au nanoparticles (at -0.4 V for 400 s), and Zn nanoflowers like (at -0.7 V for 1200 s). The RGO/Chitosan/Au/ZnO nanocomposite was characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR). Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) were used to detect LOS, and the influence of pH value, scan rate, accumulation potential, and time also losartan concentration on the performance of ZnO/Au/Chitosan/RGO/GCE were investigated. In order to investigate the selectivity of the modified electrode for the determination of LOS, the effect of possible interfering species was evaluated and showed that these species are not interferences. Also, the reproducibility of the modified electrode was investigated and implying that the RGO/Chit/Au/ZnO nanocomposite was highly reproducible. Results: The modified electrode was used as a sensor for the selective and sensitive determination of LOS with a detection limit of 0.073 μM over the dynamic linear range of 0.5μM to 18.0 μM. In addition, electrochemical oxidation of LOS was well recovered in pharmaceutical formulations. Conclusion: LOS is used to treat high blood pressure, taking into account the oxidation of this compound, the use of electrochemical based sensors, ideally suited to a specific chemical species, can be fully selectable and High-sensitivity answer is very important. In this study, the electrodes with RGO/Chit/Au/ZnO nanocomposite were modified by the electrochemical method. Nanocomposites were characterized by various methods such as FE-SEM, FT-IR, XRD, Raman, and XPS. The electrocatalytic activity of the modified electrode was then investigated for measuring LOS. According to the results of the modified electrode, high sensitivity, reproducibility, and selectivity have been shown to oxidize this composition.


2021 ◽  
Author(s):  
priyanka dutta ◽  
Vikas sharma ◽  
Hema bhardwaj ◽  
ved varun agrawal ◽  
Rajesh nil ◽  
...  

Abstract A label-free electrochemical biosensor has been developed using Zinc Oxide nanoflowers (ZnONFs) for the detection of Uric acid. ZnONFs have been synthesized by hydrothermal process and characterized with several techniques such as Ultraviolet-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR) study, X-ray diffraction study, Raman spectroscopy, Scanning Electron Microscopy and High-Resolution Transmission Electron Microscopy (HR-TEM) and electrochemical analyser to confirms the formation of nanoflowers and fabrication of electrode and bioelectrodes for uric acid detection. Pure and uniform needle flowers and deposited onto Indium Tin Oxide (ITO) substrate through electrophoretic deposition technique. Further, electrochemical studies have been performed with immobilized enzymatic bioelectrode followed by various uric acid concentrations. It has been found that the fabricated biosensor shows high sensitivity (10.38 µA/ mg/mL /cm2) and a limit of detection of 0.13 mg/mL in the range of 0.005 to 1.0 mg/mL. This study demonstrates the potential use of ZnONFs for the construction of overly sensitive biosensors for Uric acid detection.


2019 ◽  
Vol 10 ◽  
pp. 2516-2526 ◽  
Author(s):  
Kaidi Wu ◽  
Yifan Luo ◽  
Ying Li ◽  
Chao Zhang

Hollow spheres of pure ZnFe2O4 and of composites of ZnFe2O4 and reduced graphene oxide (rGO) with different rGO content were prepared via a simple solvothermal method followed by a high-temperature annealing process in an inert atmosphere. The X-ray diffraction analysis confirmed that the introduction of rGO had no effect on the spinel structure of ZnFe2O4. In addition, the results of field-emission scanning electron microscopy and (high-resolution) transmission electron microscopy indicated that the synthesized samples had the structure of hollow spheres distributed uniformly onto rGO nanosheets. The diameters of the spheres were determined as about 600–1000 nm. The gas sensing test revealed that the introduction of rGO improved the performance of the sensing of acetone to low concentration, and the ZnFe2O4/rGO composite gas sensor containing 0.5 wt % of rGO exhibited a high sensitivity in sensing test using 0.8–100 ppm acetone at 200 °C. The response of the 0.5 wt % ZnFe2O4/rGO sensor to 0.8 ppm acetone was 1.50, and its response to 10 ppm acetone was 8.18, which is around 2.6 times more pronounced than the response of pure ZnFe2O4 (10 ppm, 3.20). Moreover, the sensor showed a wide linear range and good selectivity.


Author(s):  
Seiji Isoda ◽  
Kimitsugu Saitoh ◽  
Sakumi Moriguchi ◽  
Takashi Kobayashi

On the observation of structures by high resolution electron microscopy, recording materials with high sensitivity and high quality is awaited, especially for the study of radiation sensitive specimens. Such recording material should be easily combined with the minimum dose system and cryoprotection method. Recently a new recording material, imaging plate, comes to be widely used in X-ray radiography and also in electron microscopy, because of its high sensitivity, high quality and the easiness in handling the images with a computer. The properties of the imaging plate in 100 to 400 kV electron microscopes were already discussed and the effectiveness was revealed.It is demanded to study the applicability of the imaging plate to high voltage electron microscopy. The quality of the imaging plate was investigated using an imaging plate system (JEOL EM-HSR100) equipped in a new Kyoto 1000kV electron microscope. In the system both the imaging plate and films can be introduced together into the camera chamber. Figure 1 shows the effect of accelerating voltage on read-out signal intensities from the imaging plate. The characteristic of commercially available imaging plates is unfortunately optimized for 100 to 200 keV electrons and then for 600 to 1000 keV electrons the signal is reduced. In the electron dose range of 10−13 to 10−10 C/cm2, the signal increases linearly with logarithm of electron dose in all acceralating volatges.


Sign in / Sign up

Export Citation Format

Share Document