Influence of Corrosion Product on Corrosion Behavior of Carbon Steel in Atmospheric Environment

2008 ◽  
Vol 373-374 ◽  
pp. 456-459
Author(s):  
Li Whu Jiang ◽  
G. Cao ◽  
Xu Hui Mao ◽  
Fu Xing Gan

In China’s freshwater environment, the eutrophication phenomenon has become more and more serious in recent years. The changes of water quality may induce the variation of metal’s corrosion behavior. In this paper, carbon steel as common material of hydraulic structure was the investigated object, and its early corrosion behavior affected by microbes (algae and microbe) in eutrophic lakes was studied using immersion test, electrochemical measurements and infra-red spectrometry techniques. The experimental waters were natural eutrophic water and microbescleaned water. The former was fetched from eutrophic East Lake in Wuhan City, Hubei Province of China, and the preparation of later was making natural eutrophic water sterilized and algae removed by UV radiation. In order to present the changes of carbon steel’s corrosion behavior in natural eutrophic freshwater with and without microbes, comparative experiments were conducted in lab. Both weight loss method and electrochemical techniques showed that, the corrosion rates of carbon steel decreased in early stage for the influence of microbe existence. The analysis of infrared spectra indicated that, corrosion product on the surface of coupons taken from natural eutrophic water, mainly were δ hydroxyl ferric oxide, magnetic iron ore, γ hydroxyl ferric oxide, α hydroxyl ferric oxide and β hydroxyl ferric oxide, with relative concentration ratio of 1:0.314:1.003:0.634: 0.654. While corrosion product on the surface of carbon steel taken from the microbes-cleaned water, mainly were α hydroxyl ferric oxide and γ hydroxyl ferric oxide, with relative concentration ratio of 1:1.215.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
A. Pasha ◽  
H. M. Ghasemi ◽  
J. Neshati

A slurry impingement rig containing 6 wt.% SiO2 particles was used to investigate synergistic erosion–corrosion behavior of X-65 carbon steel at various impingement angles. Maximum erosion–corrosion and erosion rates occurred at impingement angles of about 25 deg and 40–55 deg, respectively. The synergy value highly depended on the impingement angle. The formation of patches of porous corrosion product followed by the formation of corrosion pits led to a positive synergy under impingement angle of 25 deg. At higher impingement angles, the absence of pits probably due to the formation of a more durable tribocorrosion layer resulted in a negative synergy.


1994 ◽  
Vol 353 ◽  
Author(s):  
Yoichi Kojima ◽  
Toshinobu Hioki ◽  
Shigeo Tsujikawa

AbstractThe use of bentonite as buffer and carbon steel as overpack material for the geological disposal of nuclear waste is under investigation. To better assess the long term integrity of the carbon steel overpack, a quantitative analysis of the corrosion behavior on the steel surface for time frames beyond that of feasible empirical determination is required. The state n years after disposal, consisting of Carbon Steel / Corrosion Products + Bentonite / Water, was simulated and the corrosion behavior of the carbon steel in this state investigated. The following facts became apparent. Both the corrosion rate and the non-uniformity of it increased with increase in the corrosion product content in the compacted bentonite. When the corrosion product layer was formed between the carbon steel and the bentonite, it ennobled the corrosion potential and increased the corrosion rate.


2014 ◽  
Vol 511-512 ◽  
pp. 41-45
Author(s):  
Xin Feng Long ◽  
Yi Liu ◽  
Bo Lou

Taking the corrosion depth as the evaluation index, the influence law of different factors such as pH and moisture content of sludge, corrosion temperate on metal corrosion behavior was studied by single factor experiment. The corrosion product was characterized by SEM and EDX at last. The results show that the corrosion depth of A3 carbon steel increases with the increase of temperature, moisture content and acidity of sludge. The corrosion product of A3 carbon steel is mainly brown loose substance, the corrosion extent of carbon steel is deep and many elements are soaked into carbon steel. Metal corrosion results from different temperatures and different pH of sludge is non-uniform, while metal corrosion results from different moisture content of sludge is uniform.


2008 ◽  
Author(s):  
Yutaka Yokoyama ◽  
Rieko Takahashi ◽  
Hidekazu Asano ◽  
Naoki Taniguchi ◽  
Morimasa Naito

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 517
Author(s):  
Bin Sun ◽  
Lei Cheng ◽  
Chong-Yang Du ◽  
Jing-Ke Zhang ◽  
Yong-Quan He ◽  
...  

The atmospheric corrosion behavior of a hot-rolled strip with four types (I–IV) of oxide scale was investigated using the accelerated wet–dry cycle corrosion test. Corrosion resistance and porosity of oxide scale were studied by potentiometric polarization measurements. Characterization of samples after 80 cycles of the wet–dry corrosion test showed that scale comprised wüstite and magnetite had strongest corrosion resistance. Oxide scale composed of inner magnetite/iron (>70%) and an outer magnetite layer had the weakest corrosion resistance. The corrosion kinetics (weight gain) of each type of oxide scale followed an initial linear and then parabolic (at middle to late corrosion) relationship. This could be predicted by a simple kinetic model which showed good agreement with the experimental results. Analysis of the potentiometric polarization curves, obtained from oxide coated steel electrodes, revealed that the type I oxide scale had the highest porosity, and the corrosion mechanism resulted from the joint effects of electrochemical behavior and the porosity of the oxide scale. In the initial stage of corrosion, the corrosion product nucleated and an outer rust layer formed. As the thickness of outer rust layer increased, the corrosion product developed on the scale defects. An inner rust layer then formed in the localized pits as crack growth of the scale. This attacked the scale and expanded into the substrate during the later stage of corrosion. At this stage, the protective effect of the oxide scale was lost.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3563
Author(s):  
Mathieu Robineau ◽  
Valérie Deydier ◽  
Didier Crusset ◽  
Alexandre Bellefleur ◽  
Delphine Neff ◽  
...  

Carbon steel coupons were buried in a specific low-pH cement grout designed for radioactive waste disposal and left 6 months in anoxic conditions at 80 °C. The corrosion product layers were analyzed by µ-Raman spectroscopy, XRD, and SEM. They proved to be mainly composed of iron sulfides, with magnetite as a minor phase, mixed with components of the grout. Average corrosion rates were estimated by weight loss measurements between 3 and 6 µm yr−1. Corrosion profiles revealed local degradations with a depth up to 10 µm. It is assumed that the heterogeneity of the corrosion product layer, mainly composed of conductive compounds (FeS, Fe3S4, and Fe3O4), promotes the persistence of corrosion cells that may lead to locally aggravated degradations of the metal. New cement grouts, characterized by a slightly higher pH and a lower sulfide concentration, should then be designed for the considered application.


Sign in / Sign up

Export Citation Format

Share Document