Enhancing the Discharge Capacity and Rechargeability of Zn-MnO2 Alkaline Batteries through Partial Inclusion of Al into Zn

2021 ◽  
Vol MA2021-01 (1) ◽  
pp. 30-30
Author(s):  
Ehsan Faegh ◽  
Benjamin Ng ◽  
Brian Lenhart ◽  
William Mustain
2002 ◽  
Vol 18 (3) ◽  
pp. 229-241 ◽  
Author(s):  
Kurt A. Heller ◽  
Ralph Reimann

Summary In this paper, conceptual and methodological problems of school program evaluation are discussed. The data were collected in conjunction with a 10 year cross-sectional/longitudinal investigation with partial inclusion of control groups. The experiences and conclusions resulting from this long-term study are revealing not only from the vantage point of the scientific evaluation of new scholastic models, but are also valuable for program evaluation studies in general, particularly in the field of gifted education.


2011 ◽  
Vol 80-81 ◽  
pp. 332-336 ◽  
Author(s):  
Yan Xia ◽  
Mei Huang ◽  
Jun Ming Guo ◽  
Ying Jie Zhang

Effect of nitric acid and the burning time on the liquid combustion synthesis of spinel LiMn2O4 has been studied, using lithium nitrite and Manganese acetate as raw a material. The results show that the main phases are all LiMn2O4, which can be obtained at 400-600 oC. Before modified, the impurity is Mn3O4 or Mn2O3. After modified, the impurity is only Mn3O4. The aggregation obviously reduced after adding nitric acid, it is indicated that the crystalline increased. With the increasing temperatures, the modified particle size was increased and the aggregation reduced. The initial discharge capacity and cycle stability improved at some extent too. Its first discharge capacity was 104.6, 112.8 and 117.7mAh/g synthesized at 400, 500, 600 oC, respectively, and the 30th capacity retention rate were 84.89%, 80.67% and 73.24%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Gu ◽  
Brett Duane ◽  
Mikhail Repin ◽  
David J. Brenner ◽  
Frederic Zenhausern

AbstractWe report a shipping container that enables a disruptive logistics for cytogenetic biodosimetry for radiation countermeasures through pre-processing cell culture during transportation. The container showed precise temperature control (< 0.01 °C) with uniform sample temperature (< 0.1 °C) to meet the biodosimetry assay requirements. Using an existing insulated shipping box and long shelf life alkaline batteries makes it ideal for national stockpile. Dose curve of cytogenetic biodosimetry assay using the shipping container showed clear dose response and high linear correlation with the control dose curve using a laboratory incubator (Pearson’s correlation coefficient: 0.992). The container’s ability of pre-processing biological samples during transportation could have a significant impact on radiation countermeasure, as well as potential impacts in other applications such as biobanking, novel molecular or cell-based assays or therapies.


2017 ◽  
Vol 19 (26) ◽  
pp. 17270-17277 ◽  
Author(s):  
Yubin Niu ◽  
Maowen Xu ◽  
Chunlong Dai ◽  
Bolei Shen ◽  
Chang Ming Li

Na6.24Fe4.88(P2O7)4 is one of the intensively investigated polyanionic compounds and has shown high rate discharge capacity, but its relatively low electronic conductivity hampers the high performance of the batteries.


Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3581-3587
Author(s):  
Junpeng Li ◽  
Guobang Zhao ◽  
Hongyang Zhao ◽  
Ningning Zhao ◽  
Leilei Lu ◽  
...  

In this work, cerium (Ce)-doped NiCo-MOF (metal organic framework) was investigated for its application as a cathode material of alkaline batteries.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 319
Author(s):  
Ji-Hye Koo ◽  
Seung-Min Paek

Germanium/germanium oxide nanoparticles with theoretically high discharge capacities of 1624 and 2152 mAh/g have attracted significant research interest for their potential application as anode materials in Li-ion batteries. However, these materials exhibit poor long-term performance due to the large volume change of 370% during charge/discharge cycles. In the present study, to overcome this shortcoming, a Ge/GeO2/graphene composite material was synthesized. Ge/GeO2 nanoparticles were trapped between matrices of graphene nanosheets to offset the volume expansion effect. Transmission electron microscopy images revealed that the Ge/GeO2 nanoparticles were distributed on the graphene nanosheets. Discharge/charge experiments were performed to evaluate the Li storage properties of the samples. The discharge capacity of the bare Ge/GeO2 nanoparticles in the first discharge cycle was considerably large; however, the value decreased rapidly with successive cycles. Conversely, the present Ge/GeO2/graphene composite exhibited superior cycling stability.


2021 ◽  
Author(s):  
Jinkwang Hwang ◽  
Rika Hagiwara ◽  
Hiroshi Shinokubo ◽  
Ji-Young Shin

Dual-ion sodium-organic secondary batteries were provided with antiaromatic porphyrinoid, NiNc as an active electrode material, which implemented inherent charge-discharge behaviors with high discharge capacity, high stability, high Coulombic efficiency with...


Sign in / Sign up

Export Citation Format

Share Document