Skeletal muscle mitochondrial fragmentation and impaired bioenergetics from nutrient overload are prevented by carbon monoxide

2020 ◽  
Vol 319 (4) ◽  
pp. C746-C756
Author(s):  
Heath G. Gasier ◽  
Jacob Dohl ◽  
Hagir B. Suliman ◽  
Claude A. Piantadosi ◽  
Tianzheng Yu

Nutrient excess increases skeletal muscle oxidant production and mitochondrial fragmentation that may result in impaired mitochondrial function, a hallmark of skeletal muscle insulin resistance. This led us to explore whether an endogenous gas molecule, carbon monoxide (CO), which is thought to prevent weight gain and metabolic dysfunction in mice consuming high-fat diets, alters mitochondrial morphology and respiration in C2C12 myoblasts exposed to high glucose (15.6 mM) and high fat (250 µM BSA-palmitate) (HGHF). Also, skeletal muscle mitochondrial morphology, distribution, respiration, and energy expenditure were examined in obese resistant (OR) and obese prone (OP) rats that consumed a high-fat and high-sucrose diet for 10 wk with or without intermittent low-dose inhaled CO and/or exercise training. In cells exposed to HGHF, superoxide production, mitochondrial membrane potential (ΔΨm), mitochondrial fission regulatory protein dynamin-related protein 1 (Drp1) and mitochondrial fragmentation increased, while mitochondrial respiratory capacity was reduced. CO decreased HGHF-induced superoxide production, Drp1 protein levels and mitochondrial fragmentation, maintained ΔΨm, and increased mitochondrial respiratory capacity. In comparison with lean OR rats, OP rats had smaller skeletal muscle mitochondria that contained disorganized cristae, a normal mitochondrial distribution, but reduced citrate synthase protein expression, normal respiratory responses, and a lower energy expenditure. The combination of inhaled CO and exercise produced the greatest effect on mitochondrial morphology, increasing ADP-stimulated respiration in the presence of pyruvate, and preventing a decline in resting energy expenditure. These data support a therapeutic role for CO and exercise in preserving mitochondrial morphology and respiration during metabolic overload.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liselotte Bruun Christiansen ◽  
Tine Lovsø Dohlmann ◽  
Trine Pagh Ludvigsen ◽  
Ewa Parfieniuk ◽  
Michal Ciborowski ◽  
...  

AbstractStatins lower the risk of cardiovascular events but have been associated with mitochondrial functional changes in a tissue-dependent manner. We investigated tissue-specific modifications of mitochondrial function in liver, heart and skeletal muscle mediated by chronic statin therapy in a Göttingen Minipig model. We hypothesized that statins enhance the mitochondrial function in heart but impair skeletal muscle and liver mitochondria. Mitochondrial respiratory capacities, citrate synthase activity, coenzyme Q10 concentrations and protein carbonyl content (PCC) were analyzed in samples of liver, heart and skeletal muscle from three groups of Göttingen Minipigs: a lean control group (CON, n = 6), an obese group (HFD, n = 7) and an obese group treated with atorvastatin for 28 weeks (HFD + ATO, n = 7). Atorvastatin concentrations were analyzed in each of the three tissues and in plasma from the Göttingen Minipigs. In treated minipigs, atorvastatin was detected in the liver and in plasma. A significant reduction in complex I + II-supported mitochondrial respiratory capacity was seen in liver of HFD + ATO compared to HFD (P = 0.022). Opposite directed but insignificant modifications of mitochondrial respiratory capacity were seen in heart versus skeletal muscle in HFD + ATO compared to the HFD group. In heart muscle, the HFD + ATO had significantly higher PCC compared to the HFD group (P = 0.0323). In the HFD group relative to CON, liver mitochondrial respiration decreased whereas in skeletal muscle, respiration increased but these changes were insignificant when normalizing for mitochondrial content. Oral atorvastatin treatment in Göttingen Minipigs is associated with a reduced mitochondrial respiratory capacity in the liver that may be linked to increased content of atorvastatin in this organ.


2010 ◽  
Vol 298 (1) ◽  
pp. E8-E16 ◽  
Author(s):  
Lake Q. Jiang ◽  
Pablo M. Garcia-Roves ◽  
Thais de Castro Barbosa ◽  
Juleen R. Zierath

Expression of an activated form of calcineurin in skeletal muscle selectively up-regulates slow-fiber-specific gene expression. Here, we tested the hypothesis that expression of activated calcineurin in skeletal muscle influences body composition, energy homeostasis, and exercise performance. Using transgenic mice expressing activated calcineurin (CnA*) in skeletal muscle (MCK-CnA* transgenic mice), we determined whether skeletal muscle reprogramming by calcineurin activation affects exercise performance and skeletal muscle mitochondrial function. Body weight and extensor digitorum longus (EDL) skeletal muscle weight were reduced 10% in MCK-CnA* mice compared with wild-type littermates. Basal oxygen consumption, food intake, and voluntary exercise behavior were unchanged between MCK-CnA* and wild-type mice. However, when total energy expenditure was normalized by fat-free mass, energy expenditure was increased in MCK-CnA* mice. An endurance performance treadmill running test revealed MCK-CnA* mice are fatigue resistant and run 50% farther before exhaustion. After a standardized exercise bout, glycogen and triglyceride content in EDL muscle was higher in MCK-CnA* vs. wild-type mice. Mitochondrial respiratory capacity was increased 35% in EDL muscle from resting MCK-CnA* mice. In conclusion, our results provide evidence to support the hypothesis that calcineurin activation in skeletal muscle increases mitochondrial oxidative function and energy substrate storage, which contributes to enhanced endurance exercise performance. These adaptive changes occur as a consequence of a lifelong expression of a constitutively active calcineurin and mimic the response to chronic endurance training.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Schwarzer ◽  
S Zeeb ◽  
E Heyne ◽  
L.G Koch ◽  
S.L Britton ◽  
...  

Abstract   Low exercise capacity is a strong predictor of all-cause cardiovascular mortality and morbidity. In contrast, high exercise capacity is protective and “physical fitness” is considered beneficial. These effects seem to be mediated through mitochondrial function. Importantly, exercise capacity consists of an intrinsic (genetic) and an extrinsic (exercise, environmental) part. In humans, these two parts cannot be truly separated. The rat model of high (HCR) and low (LCR) capacity runners allows to distinguish between the two parts. We assessed mitochondrial function in this model, specifically investigating the impact of exercise training on mitochondrial respiratory capacity. HCR and LCR were divided into control and exercised groups. Exercise capacity was determined individually using a ramped test. Animals were trained five times a week for four weeks on a treadmill. Mitochondria were isolated from heart, M. gastrocnemius and liver. Citrate synthase activity and protein content were determined photometrically and respiratory capacity was measured using a Clark-type electrode. At the same age and tibia length, LCR-C were heavier and had a lower heart to body weight ratio than HCR-C. Citrate synthase activity was lower in skeletal muscle of LCR but cardiac citrate synthase was not different between sedentary HCR and LCR. Respiratory capacity in heart and liver was not different between sedentary HCR and LCR but was lower in skeletal muscle in LCR compared to HCR with all selected substrates (glutamate: 86,0±17,6 vs. 63,7±8,0; succinate: 203±19 vs. 136±17 nAO/min/mg Protein). Exercise training led to an increase in body weight in HCR but did not change body weight in LCR. Similarly, gastrocnemius and soleus weights only increased with exercise in HCR. Exercise led to an increase in citrate synthase activity in hearts of HCR (0,78±0,07 vs. 1,58±0,45 U/mg Protein) but not of LCR. Consistently, mitochondrial respiratory capacity was found increased in HCR with exercise in heart with all substrates (glutamate: 261±43 vs. 305±35; succinate 417±32 vs. 539±65 nAO/min/mg Protein). Liver was not affected by exercise. Conclusion Our data suggest that genetic predisposition for aerobic capacity additionally affects the response of mitochondria to exercise. Thus, it may be possible that the “born runner” benefits more from aerobic exercise training than the “less genetically equipped counterpart”. Funding Acknowledgement Type of funding source: None


Author(s):  
Emily J. Arentson-Lantz ◽  
Jasmine Mikovic ◽  
Nisha Bhattarai ◽  
Christopher S. Fry ◽  
Séverine Lamon ◽  
...  

Leucine supplementation attenuates the loss of skeletal muscle mass and function in older adults during bed rest. We sought to determine if leucine could also preserve and/or restore mitochondrial function and muscle oxidative capacity during periods of disuse and rehabilitation. Healthy older adults (69.1 ± 1.1 years) consumed a structured diet with supplemental leucine (LEU: 0.06 g/ kg body weight/ meal; n=8) or alanine (CON: 0.06 g/ kg body weight/meal; n=8) during 7 days of bed rest and 5 days of inpatient rehabilitation. A 75 g oral glucose tolerance test was performed at baseline (PreBR), after bed rest (PostBR) and rehabilitation (PostRehab) and used to calculate an indicator of insulin sensitivity, metabolic clearance rate. (MCR). Tissue samples from the m. vastus lateralis were collected PreBR, PostBR, and PostRehab to assess mitochondrial respiratory capacity and protein markers of the oxidative phosphorylation and a marker of the antioxidant defense systems. During bed rest, leucine tended to preserve insulin sensitivity (Change in MCR, CON vs. LEU: -3.5 ± 0.82 vs LEU: -0.98 ± 0.88, p=0.054), but had no effect on mitochondrial respiratory capacity (Change in State 3+succinate CON vs. LEU -8.7 ± 6.1 vs. 7.3 ± 4.1 pmol O2/sec/mg tissue, p=0.10) Following rehabilitation, leucine increased ATP-linked respiration (CON vs. LEU: -8.9 ± 6.2 vs. 15.5± 4.4 pmol O2/sec/mg tissue, p=0.0042). While the expression of mitochondrial respiratory and antioxidant proteins was not impacted, leucine supplementation preserved specific pathways of mitochondrial respiration, insulin sensitivity and a marker of oxidative stress during bed rest and rehabilitation.


Author(s):  
Kelly N. Z. Fuller ◽  
Colin S. McCoin ◽  
Alex T. Von Schulze ◽  
Claire J. Houchen ◽  
Michael A. Choi ◽  
...  

We recently reported that compared to males, female mice have increased hepatic mitochondrial respiratory capacity and are protected against high-fat diet-induced steatosis. Here we sought to determine the role of estrogen in hepatic mitochondrial function, steatosis, and bile acid metabolism in female mice, as well as investigate potential benefits of exercise in the absence or presence of estrogen via ovariectomy (OVX). Female C57BL mice (n=6 per group) were randomly assigned to sham surgery (Sham), ovariectomy (OVX), or OVX plus estradiol replacement therapy (OVX+Est). Half of the mice in each treatment group were sedentary (SED) or had access to voluntary wheel running (VWR). All mice were fed a high-fat diet (HFD) and were housed at thermoneutral temperatures. We assessed isolated hepatic mitochondrial respiratory capacity using the Oroboros O2k with both pyruvate and palmitoylcarnitine as substrates. As expected, OVX mice presented with greater hepatic steatosis, weight gain, and fat mass gain compared to Sham and OVX+Est animals. Hepatic mitochondrial coupling (Basal/State 3 respiration) with pyruvate was impaired following OVX, but both VWR and estradiol treatment rescued coupling to levels greater than or equal to Sham animals. Estradiol and exercise also had different effects on liver electron transport chain protein expression depending on OVX status. Markers of bile acid metabolism and excretion were also impaired by ovariectomy but rescued with estradiol add-back. Together our data suggest that estrogen depletion impairs hepatic mitochondrial function and liver health, and that estradiol replacement and modest exercise can aid in rescuing this phenotype.


2012 ◽  
Vol 302 (6) ◽  
pp. E731-E739 ◽  
Author(s):  
Maria H. Holmström ◽  
Eduardo Iglesias-Gutierrez ◽  
Juleen R. Zierath ◽  
Pablo M. Garcia-Roves

The tissue-specific role of mitochondrial respiratory capacity in the development of insulin resistance and type 2 diabetes is unclear. We determined mitochondrial function in glycolytic and oxidative skeletal muscle and liver from lean (+/ ?) and obese diabetic ( db/db) mice. In lean mice, the mitochondrial respiration pattern differed between tissues. Tissue-specific mitochondrial profiles were then compared between lean and db/db mice. In liver, mitochondrial respiratory capacity and protein expression, including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), was decreased in db/db mice, consistent with increased mitochondrial fission. In glycolytic muscle, mitochondrial respiration, as well as protein and mRNA expression of mitochondrial markers, was increased in db/db mice, suggesting increased mitochondrial content and fatty acid oxidation capacity. In oxidative muscle, mitochondrial complex I function and PGC-1α and mitochondrial transcription factor A (TFAM) protein levels were decreased in db/db mice, along with increased level of proteins related to mitochondrial dynamics. In conclusion, mitochondrial respiratory performance is under the control of tissue-specific mechanisms and is not uniformly altered in response to obesity. Furthermore, insulin resistance in glycolytic skeletal muscle can be maintained by a mechanism independent of mitochondrial dysfunction. Conversely, insulin resistance in liver and oxidative skeletal muscle from db/db mice is coincident with mitochondrial dysfunction.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Yumiko Oishi ◽  
Ichiro Manabe ◽  
Kazuyuki Tobe ◽  
Takashi Kadowaki ◽  
Ryozo Nagai

We have previously shown that a zinc finger transcription factor, Krüppel-like factor 5 (KLF5), plays an important role in pathogenesis of cardiovascular diseases, such as atherosclerosis. KLF5 heterozygous knockout ( KLF5 +/ − ) mice exhibited much less neointima formation, cardiac hypertrophy and fibrosis. We also found that expression of KLF5 correlated with a higher incidence of restenosis following PCI and the SNP located within the KLF5 promoter was associated with an increased risk of hypertension in man. Interestingly, KLF5 is also expressed in metabolic tissues such as adipose tissue, skeletal muscle, and pancreatic β-cells. Thus, we hypothesized that KLF5 might play a role in metabolic diseases. To test this, KLF5 +/ − mice were fed with high-fat diet. Although KLF5 +/ − mice ate more food than wild-type littermates, they were resistant to high-fat diet-induced obesity and protected from dyslipidemia, glucose intolerance and hepatic steatosis, indicating that KLF5 + /− mice were less susceptible to metabolic syndrome. The systemic O 2 consumption and expression of genes involved in energy expenditure in skeletal muscle were increased in KLF5 + /− mice, demonstrating enhanced energy expenditure, which partly explains the phenotype. Knocking down KLF5 by siRNA increased expression levels of UCP2/3 and CPT-1b in C2C12 myotubes, suggesting that KLF5 may inhibit energy expenditure-related genes. Chromatin immunoprecipitation and coimmunoprecipitation assays showed that KLF5 interacted with corepressors, such as SMRT and NCoR, and strongly inhibited the UCP and CPT-1b promoters. We found that this inhibitory activity of KLF5 depended on its SUMOylation. When KLF5 was deSUMOylated, it activated the promoters. These data demonstrate that KLF5 acts as a molecular switch for energy expenditure and the posttranslational modifications of KLF5 including SUMOylation turns on/off the switch function of KLF5. Given that KLF5 also controls tissue remodeling in response to external stress, KLF5 may mediate metabolic dysfunction and atherosclerosis in metabolic syndrome. Our findings also suggest that the posttranscriptional modification of KLF5 is an attractive novel therapeutic target.


2010 ◽  
Vol 35 (2) ◽  
pp. 151-162 ◽  
Author(s):  
Scott P. Naples ◽  
Sarah J. Borengasser ◽  
R. Scott. Rector ◽  
Grace M. Uptergrove ◽  
E. Matthew Morris ◽  
...  

Rats selected artificially to be low-capacity runners (LCR) possess a metabolic syndrome phenotype that is worsened by a high-fat diet (HFD), whereas rats selected to be high-capacity runners (HCR) are protected against HFD-induced obesity and insulin resistance. This study examined whether protection against, or susceptibility to, HFD-induced insulin resistance in the HCR–LCR strains is associated with contrasting metabolic adaptations in skeletal muscle. HCR and LCR rats (generation 20; n = 5–6; maximum running distance ∼1800 m vs. ∼350 m, respectively (p < 0.0001)) were divided into HFD (71.6% energy from fat) or normal chow (NC) (16.7% energy from fat) groups for 7 weeks (from 24 to 31 weeks of age). Skeletal muscle (red gastrocnemius) mitochondrial-fatty acid oxidation (FAO), mitochondrial-enzyme activity, mitochondrial-morphology, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and peroxisome proliferator-activated receptor δ (PPARδ) expression and insulin sensitivity (intraperitoneal glucose tolerance tests) were measured. The HFD caused increased adiposity and reduced insulin sensitivity only in the LCR and not the HCR strain. Isolated mitochondria from the HCR skeletal muscle displayed a 2-fold-higher rate of FAO on NC, but both groups increased FAO following HFD. PGC-1α mRNA expression and superoxide dismutase activity were significantly reduced with the HFD in the LCR rats, but not in the HCR rats. PPARδ expression did not differ between strains or dietary conditions. These results do not provide a clear connection between protection of insulin sensitivity and HFD-induced adaptive changes in mitochondrial function or transcriptional responses but do not dismiss the possibility that elevated mitochondrial FAO in the HCR may play a protective role.


Sign in / Sign up

Export Citation Format

Share Document