Muscle LIM protein plays both structural and functional roles in skeletal muscle

2005 ◽  
Vol 289 (5) ◽  
pp. C1312-C1320 ◽  
Author(s):  
Ilona A. Barash ◽  
Liby Mathew ◽  
Michele Lahey ◽  
Marion L. Greaser ◽  
Richard L. Lieber

Muscle LIM protein (MLP) has been suggested to be an important mediator of mechanical stress in cardiac tissue, but the role that it plays in skeletal muscle remains unclear. Previous studies have shown that it is dramatically upregulated in fast-to-slow fiber-type transformation and also after eccentric contraction (EC)-induced muscle injury. The functional consequences of this upregulation, if any, are unclear. In the present study, we have examined the skeletal muscle phenotype of MLP-knockout (MLPKO) mice in terms of their response to EC-induced muscle injuries. The data suggest that while the MLPKO mice recover completely after EC-induced injury, their torque production lags behind that of heterozygous littermates in the early stages of the recovery process. This lag is accompanied by decreased expression of the muscle regulatory factor MyoD, suggesting that MLP may influence gene expression. In addition, there is evidence of type I fiber atrophy and a shorter resting sarcomere length in the MLPKO mice, but no significant differences in fiber type distribution. In summary, MLP appears to play a subtle role in the maintenance of normal muscle characteristics and in the early events of the recovery process of skeletal muscle to injury, serving both structural and gene-regulatory roles.

2015 ◽  
Vol 118 (6) ◽  
pp. 699-706 ◽  
Author(s):  
V. L. Wyckelsma ◽  
M. J. McKenna ◽  
F. R. Serpiello ◽  
C. R. Lamboley ◽  
R. J. Aughey ◽  
...  

The Na+-K+-ATPase (NKA) plays a key role in muscle excitability, but little is known in human skeletal muscle about fiber-type-specific differences in NKA isoform expression or adaptability. A vastus lateralis muscle biopsy was taken in 17 healthy young adults to contrast NKA isoform protein relative abundance between type I and IIa fibers. We further investigated muscle fiber-type-specific NKA adaptability in eight of these adults following 4-wk repeated-sprint exercise (RSE) training, comprising three sets of 5 × 4-s sprints, 3 days/wk. Single fibers were separated, and myosin heavy chain (I and IIa) and NKA (α1–3 and β1–3) isoform abundance were determined via Western blotting. All six NKA isoforms were expressed in both type I and IIa fibers. No differences between fiber types were found for α1-, α2-, α3-, β1-, or β3-isoform abundances. The NKA β2-isoform was 27% more abundant in type IIa than type I fibers ( P < 0.05), with no other fiber-type-specific trends evident. RSE training increased β1 in type IIa fibers (pretraining 0.70 ± 0.25, posttraining 0.84 ± 0.24 arbitrary units, 42%, P < 0.05). No training effects were found for other NKA isoforms. Thus human skeletal muscle expresses all six NKA isoforms and not in a fiber-type-specific manner; this points to their different functional roles in skeletal muscle cells. Detection of elevated NKA β1 after RSE training demonstrates the sensitivity of the single-fiber Western blotting technique for fiber-type-specific intervention effects.


1998 ◽  
Vol 85 (4) ◽  
pp. 1273-1278 ◽  
Author(s):  
Barbara Norman ◽  
Donna K. Mahnke-Zizelman ◽  
Amy Vallis ◽  
Richard L. Sabina

AMPD1 genotype, relative fiber type composition, training status, and gender were evaluated as contributing factors to the reported variation in AMP deaminase enzyme activity in healthy skeletal muscle. Multifactorial correlative analyses demonstrate that AMPD1 genotype has the greatest effect on enzyme activity. An AMPD1 mutant allele frequency of 13.7 and a 1.7% incidence of enzyme deficiency was found across 175 healthy subjects. Homozygotes for the AMPD1 normal allele have high enzyme activities, and heterozygotes display intermediate activities. When examined according to genotype, other factors were found to affect variability as follows: AMP deaminase activity in homozygotes for the normal allele exhibits a negative correlation with the relative percentage of type I fibers and training status. Conversely, residual AMP deaminase activity in homozygotes for the mutant allele displays a positive correlation with the relative percentage of type I fibers. Opposing correlations in different homozygous AMPD1 genotypes are likely due to relative fiber-type differences in the expression of AMPD1 and AMPD3 isoforms. Gender also contributes to variation in total skeletal muscle AMP deaminase activity, with normal homozygous and heterozygous women showing only 85–88% of the levels observed in genotype-matched men.


1997 ◽  
Vol 83 (4) ◽  
pp. 1291-1299 ◽  
Author(s):  
Michael D. Delp ◽  
Changping Duan ◽  
John P. Mattson ◽  
Timothy I. Musch

Delp, Michael D., Changping Duan, John P. Mattson, and Timothy I. Musch. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure. J. Appl. Physiol. 83(4): 1291–1299, 1997.—One of the primary consequences of left ventricular dysfunction (LVD) after myocardial infarction is a decrement in exercise capacity. Several factors have been hypothesized to account for this decrement, including alterations in skeletal muscle metabolism and aerobic capacity. The purpose of this study was to determine whether LVD-induced alterations in skeletal muscle enzyme activities, fiber composition, and fiber size are 1) generalized in muscles or specific to muscles composed primarily of a given fiber type and 2) related to the severity of the LVD. Female Wistar rats were divided into three groups: sham-operated controls ( n = 13) and rats with moderate ( n = 10) and severe ( n = 7) LVD. LVD was surgically induced by ligating the left main coronary artery and resulted in elevations ( P < 0.05) in left ventricular end-diastolic pressure (sham, 5 ± 1 mmHg; moderate LVD, 11 ± 1 mmHg; severe LVD, 25 ± 1 mmHg). Moderate LVD decreased the activities of phosphofructokinase (PFK) and citrate synthase in one muscle composed of type IIB fibers but did not modify fiber composition or size of any muscle studied. However, severe LVD diminished the activity of enzymes involved in terminal and β-oxidation in muscles composed primarily of type I fibers, type IIA fibers, and type IIB fibers. In addition, severe LVD induced a reduction in the activity of PFK in type IIB muscle, a 10% reduction in the percentage of type IID/X fibers, and a corresponding increase in the portion of type IIB fibers. Atrophy of type I fibers, type IIA fibers, and/or type IIB fibers occurred in soleus and plantaris muscles of rats with severe LVD. These data indicate that rats with severe LVD after myocardial infarction exhibit 1) decrements in mitochondrial enzyme activities independent of muscle fiber composition, 2) a reduction in PFK activity in type IIB muscle, 3) transformation of type IID/X to type IIB fibers, and 4) atrophy of type I, IIA, and IIB fibers.


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


2017 ◽  
Vol 122 (3) ◽  
pp. 533-540 ◽  
Author(s):  
Abigail L. Mackey ◽  
Michael Kjaer

Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibers as they undergo necrosis, followed closely by satellite cell-mediated myogenesis, have been mapped in detail. Much less is known about the adaptation throughout this process of both the connective tissue structures surrounding the myofibers and the fibroblasts, the cells responsible for synthesizing this connective tissue. However, the few studies investigating muscle connective tissue remodeling demonstrate a strong response that appears to be sustained for a long time after the major myofiber responses have subsided. While the use of electrical stimulation to induce eccentric contractions vs. voluntary eccentric contractions appears to lead to a greater extent of myofiber necrosis and regenerative response, this difference is not apparent when the muscle connective tissue responses are compared, although further work is required to confirm this. Pharmacological agents (growth hormone and angiotensin II type I receptor blockers) are considered in the context of accelerating the muscle connective tissue adaptation to loading. Cautioning against this, however, is the association between muscle matrix protein remodeling and protection against reinjury, which suggests that a (so far undefined) period of vulnerability to reinjury may exist during the remodeling phases. The role of individual muscle matrix components and their spatial interaction during adaptation to eccentric contractions is an unexplored field in human skeletal muscle and may provide insight into the optimal timing of rest vs. return to activity after muscle injury.


2019 ◽  
Vol 316 (5) ◽  
pp. E695-E706 ◽  
Author(s):  
Mark W. Pataky ◽  
Carmen S. Yu ◽  
Yilin Nie ◽  
Edward B. Arias ◽  
Manak Singh ◽  
...  

Insulin-stimulated glucose uptake (GU) by skeletal muscle is enhanced several hours after acute exercise in rats with normal or reduced insulin sensitivity. Skeletal muscle is composed of multiple fiber types, but exercise’s effect on fiber type-specific insulin-stimulated GU in insulin-resistant muscle was previously unknown. Male rats were fed a high-fat diet (HFD; 2 wk) and were either sedentary (SED) or exercised (2-h exercise). Other, low-fat diet-fed (LFD) rats remained SED. Rats were studied immediately postexercise (IPEX) or 3 h postexercise (3hPEX). Epitrochlearis muscles from IPEX rats were incubated in 2-deoxy-[3H]glucose (2-[3H]DG) without insulin. Epitrochlearis muscles from 3hPEX rats were incubated with 2-[3H]DG ± 100 µU/ml insulin. After single fiber isolation, GU and fiber type were determined. Glycogen and lipid droplets (LDs) were assessed histochemically. GLUT4 abundance was determined by immunoblotting. In HFD-SED vs. LFD-SED rats, insulin-stimulated GU was decreased in type IIB, IIX, IIAX, and IIBX fibers. Insulin-independent GU IPEX was increased and glycogen content was decreased in all fiber types (types I, IIA, IIB, IIX, IIAX, and IIBX). Exercise by HFD-fed rats enhanced insulin-stimulated GU in all fiber types except type I. Single fiber analyses enabled discovery of striking fiber type-specific differences in HFD and exercise effects on insulin-stimulated GU. The fiber type-specific differences in insulin-stimulated GU postexercise in insulin-resistant muscle were not attributable to a lack of fiber recruitment, as indirectly evidenced by insulin-independent GU and glycogen IPEX, differences in multiple LD indexes, or altered GLUT4 abundance, implicating fiber type-selective differences in the cellular processes responsible for postexercise enhancement of insulin-mediated GLUT4 translocation.


2014 ◽  
Vol 306 (12) ◽  
pp. R925-R933 ◽  
Author(s):  
Ding An ◽  
Sarah J. Lessard ◽  
Taro Toyoda ◽  
Min-Young Lee ◽  
Ho-Jin Koh ◽  
...  

Increasing evidence suggests that TRB3, a mammalian homolog of Drosophila tribbles, plays an important role in cell growth, differentiation, and metabolism. In the liver, TRB3 binds and inhibits Akt activity, whereas in adipocytes, TRB3 upregulates fatty acid oxidation. In cultured muscle cells, TRB3 has been identified as a potential regulator of insulin signaling. However, little is known about the function and regulation of TRB3 in skeletal muscle in vivo. In the current study, we found that 4 wk of voluntary wheel running (6.6 ± 0.4 km/day) increased TRB3 mRNA by 1.6-fold and protein by 2.5-fold in the triceps muscle. Consistent with this finding, muscle-specific transgenic mice that overexpress TRB3 (TG) had a pronounced increase in exercise capacity compared with wild-type (WT) littermates (TG: 1,535 ± 283; WT: 644 ± 67 joules). The increase in exercise capacity in TRB3 TG mice was not associated with changes in glucose uptake or glycogen levels; however, these mice displayed a dramatic shift toward a more oxidative/fatigue-resistant (type I/IIA) muscle fiber type, including threefold more type I fibers in soleus muscles. Skeletal muscle from TRB3 TG mice had significantly decreased PPARα expression, twofold higher levels of miR208b and miR499, and corresponding increases in the myosin heavy chain isoforms Myh7 and Myb7b, which encode these microRNAs. These findings suggest that TRB3 regulates muscle fiber type via a peroxisome proliferator-activated receptor-α (PPAR-α)-regulated miR499/miR208b pathway, revealing a novel function for TRB3 in the regulation of skeletal muscle fiber type and exercise capacity.


2018 ◽  
Vol 125 (2) ◽  
pp. 470-478 ◽  
Author(s):  
Martin Thomassen ◽  
Morten Hostrup ◽  
Robyn M. Murphy ◽  
Brett A. Cromer ◽  
Casper Skovgaard ◽  
...  

Cl− channel protein 1 (ClC-1) may be important for excitability and contractility in skeletal muscle, but ClC-1 abundance has not been examined in human muscle. The aim of the present study was to examine ClC-1 abundance in human skeletal muscle, including fiber type specific differences and the effect of exercise training. A commercially available antibody was tested with positive and negative control tissue, and it recognized specifically ClC-1 in the range from 100 to 150 kDa. Abundance of ClC-1 was 38% higher ( P < 0.01) in fast twitch Type IIa muscle fibers than in slow twitch Type I. Muscle ClC-1 abundance did not change with 4 wk of training consisting of 30 min cycling at 85% of maximal heart rate (HRmax) and 3 × 30-s all out sprints or during a 7-wk training period with 10–12 × 30 s uphill cycling and 4–5 × ~4 min cycling at 90%–95% of HRmax. ClC-1 abundance correlated negatively ( P < 0.01) with maximal oxygen consumption ( r = –0.552) and incremental exercise performance ( r = –0.546). In addition, trained cyclists had lower ( P < 0.01) ClC-1 abundance than lesser trained individuals. The present observations indicate that a low abundance of muscle ClC-1 may be beneficial for exercise performance, but the role of abundance and regulation of ClC-1 in skeletal muscle of humans with respect to exercise performance and trainability need to be elucidated. NEW & NOTEWORTHY Abundance of the Cl− channel protein 1 (ClC-1) chloride channel may be important for excitability and contractility in human skeletal muscle and may therefore have implications for fatigue development. In this study, we confirmed ClC-1 specificity for a commercially available antibody, and this study is first to our knowledge to determine ClC-1 protein abundance in human muscle by Western blotting. We observed that abundance of ClC-1 was higher in fast compared with slow twitch fibers and lower in trained individuals than in recreationally active.


Gene ◽  
2015 ◽  
Vol 566 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Elizabeth Vafiadaki ◽  
Demetrios A. Arvanitis ◽  
Despina Sanoudou

Sign in / Sign up

Export Citation Format

Share Document