Chronic PYY3–36 treatment promotes fat oxidation and ameliorates insulin resistance in C57BL6 mice

2007 ◽  
Vol 292 (1) ◽  
pp. E238-E245 ◽  
Author(s):  
Anita M. van den Hoek ◽  
Annemieke C. Heijboer ◽  
Peter J. Voshol ◽  
Louis M. Havekes ◽  
Johannes A. Romijn ◽  
...  

PYY3–36 is a gut-derived hormone acting on hypothalamic nuclei to inhibit food intake. We recently showed that PYY3–36 acutely reinforces insulin action on glucose disposal in mice. We aimed to evaluate effects of PYY3–36 on energy metabolism and the impact of chronic PYY3–36 treatment on insulin sensitivity. Mice received a single injection of PYY3–36 or were injected once daily for 7 days, and energy metabolism was subsequently measured in a metabolic cage. Furthermore, the effects of chronic PYY3–36 administration (continuous and intermittent) on glucose turnover were determined during a hyperinsulinemic-euglycemic clamp. PYY3–36 inhibited cumulative food intake for 30 min of refeeding after an overnight fast (0.29 ± 0.04 vs. 0.56 ± 0.12 g, P = 0.036) in an acute setting, but not after 7 days of daily dosing. Body weight, total energy expenditure, and physical activity were not affected by PYY3–36. However, it significantly decreased the respiratory quotient. Both continuous and intermittent PYY3–36 treatment significantly enhanced insulin-mediated whole body glucose disposal compared with vehicle treatment (81.2 ± 6.2 vs. 77.1 ± 5.2 vs. 63.4 ± 5.5 μmol·min−1·kg−1, respectively). In particular, PYY3–36 treatment increased glucose uptake in adipose tissue, whereas its impact on glucose disposal in muscle did not attain statistical significance. PYY3–36 treatment shifts the balance of fuel use in favor of fatty acids and enhances insulin sensitivity in mice, where it particularly promotes insulin-mediated glucose disposal. Notably, these metabolic effects of PYY3–36 remain unabated after chronic administration, in contrast to its anorexic effects.

2011 ◽  
Vol 300 (2) ◽  
pp. R511-R518 ◽  
Author(s):  
Rhianna C. Laker ◽  
Belinda A. Henry ◽  
Glenn D. Wadley ◽  
Iain J. Clarke ◽  
Benedict J. Canny ◽  
...  

In sheep, central leptin infusion reduces food intake and increases energy expenditure in adipose tissue and skeletal muscle. The mechanisms for these peripheral effects of central leptin in sheep are not known but, on the basis of rodent studies, may involve AMPK. In mice, central leptin acutely increases both skeletal muscle AMPK activation and glucose uptake. Thus, to investigate whether these effects exist in higher-order mammals, ovariectomized Corriedale ewes ( n = 4 per group) received a continuous lateral ventricular infusion (60 μl/h) of either leptin (50 μg/h) or artificial cerebrospinal fluid (aCSF; CON) for 8 days. Tritiated glucose (3-3H-glucose) was infused intravenously for calculation of whole body glucose turnover during both acute (6 h) and chronic (7–8 days) leptin/aCSF infusion. Muscle biopsies were also obtained. Leptin infusion reduced ( P < 0.05) food intake and body weight, and it also increased plasma epinephrine concentration at 6 h and 7 days, suggesting increased sympathetic nerve activity. Despite this, and in contrast to rodent studies, central leptin infusion did not increase skeletal muscle AMPKα Thr172 phosphorylation or ACCβ Ser221 phosphorylation. Surprisingly, the glucose rate of appearance (glucose Ra) and rate of disappearance (glucose Rd) were reduced by both acute and chronic leptin infusion. Direct infusion of the AMPK activator 5-aminoimidazole-4-carboxyamide-ribonucleoside (AICAR) into the femoral artery increased skeletal muscle AMPK phosphorylation. In conclusion, although central leptin infusion in sheep caused the predicted reduction in food intake and increases plasma epinephrine concentration, it had no effect on AMPK activation in skeletal muscle and actually reduced glucose disposal. This suggests that there are species differences in the peripheral responses to central leptin infusion.


2006 ◽  
Vol 154 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Helga Á Sigurjónsdóttir ◽  
Josef Koranyi ◽  
Magnus Axelson ◽  
Bengt-Åke Bengtsson ◽  
Gudmundur Johannsson

Objective: In the past years the interaction of GH and 11βhydroxysteroid dehydrogenase (11βHSD) in the pathogenesis of central obesity has been suggested. Design: We studied the effects of 9 months of GH treatment on 11βHSD activity and its relationship with body composition and insulin sensitivity in 30 men with abdominal obesity, aged 48–66 years, in a randomised, double-blind, placebo-controlled trial. Methods: Urinary steroid profile was used to estimate 11βHSD type 1 and 2 (11βHSD1 and 11βHSD2) activities. Abdominal s.c. and visceral adipose tissues were measured using computed tomography. Glucose disposal rate (GDR) obtained during a euglycaemic–hyperinsulinaemic glucose clamp was used to assess insulin sensitivity. Results: In the GH-treated group the 11βHSD1 activity decreased transiently after 6 weeks (P < 0.01) whereas 11βHSD2 increased after 9 months of treatment (P < 0.05). Between 6 weeks and 9 months, GDR increased and visceral fat mass decreased. Changes in 11βHSD1 correlated with changes in visceral fat mass between baseline and 6 weeks. There were no significant correlations between 11βHSD1 and 11βHSD 2 and changes in GDR. Discussion: The study demonstrates that short- and long-term GH treatment has different effects on 11βHSD1 and 11βHSD2 activity. Moreover, the data do not support that long-term metabolic effects of GH are mediated through its action on 11βHSD.


2020 ◽  
Vol Volume 13 ◽  
pp. 489-497 ◽  
Author(s):  
Giuseppina Manzoni ◽  
Alice Oltolini ◽  
Silvia Perra ◽  
Emanuele Muraca ◽  
Stefano Ciardullo ◽  
...  

1990 ◽  
Vol 259 (2) ◽  
pp. E210-E215 ◽  
Author(s):  
J. R. Lupien ◽  
M. F. Hirshman ◽  
E. S. Horton

The effect of a continuous infusion of norepinephrine (NE) on glucose disposal in vivo was examined in conscious restrained rats using the euglycemic-hyperinsulinemic clamp technique. NE, 1,000 micrograms.kg-1.day-1 (130 nmol.kg-1.h-1) or vehicle (CO) was infused for 10 days in adult male Sprague-Dawley rats using subcutaneously implanted osmotic minipumps. Body weight and food intake were similar in both groups of animals throughout the study. Fasting basal plasma glucose and insulin concentrations were similar in both groups. However, basal hepatic glucose production (HGP) was increased by NE treatment (9.03 +/- 0.63 vs. 13.20 +/- 1.15 mg.kg-1.min-1, P less than 0.05, CO vs. NE, respectively). Insulin infusions of 2, 6, and 200 mU.kg-1.min-1 suppressed HGP to the same degree in both groups. During 2, 6, and 200 mU.kg-1.h-1 insulin infusions the glucose disposal rate was 65, 60, and 13% greater in NE-treated animals than in controls. Acute beta-adrenergic blockade with propranolol infused at 405 nmol.kg-1.h-1 during the glucose clamps did not normalize glucose disposal. These results demonstrate that chronic NE infusion is associated with increased basal glucose turnover and increased insulin sensitivity of peripheral tissues.


1994 ◽  
Vol 77 (2) ◽  
pp. 534-541 ◽  
Author(s):  
J. Gao ◽  
W. M. Sherman ◽  
S. A. McCune ◽  
K. Osei

This study utilized the obese male spontaneously hypertensive heart failure rat (SHHF/Mcc-facp), which has metabolic features very similar to human non-insulin-dependent diabetes mellitus. The purpose of this study was to assess the insulin sensitivity and responsiveness of whole body glucose disposal and insulin suppressability of hepatic glucose production with use of the euglycemic-hyperinsulinemic clamp procedure in 12- to 15-wk-old SHHF/Mcc-facp rats at rest (OS) and 2.5 h after a single session of acute exercise (OE). Lean male SHHF/Mcc-facp rats were sedentary (LS) control animals. At least three clamps producing different insulin-stimulated responses were performed on each animal in a randomized order. At this age the obese animals are normotensive and have not developed congestive heart failure. Compared with LS, OS were significantly hyperglycemic and hyperinsulinemic and insulin sensitivity and responsiveness of whole body glucose uptake and insulin suppressability of hepatic glucose production were significantly decreased. Compared with LS and OS, acute exercise significantly decreased resting plasma glucose but did not alter plasma insulin. Compared with OS, acute exercise significantly increased the insulin responsiveness of whole body glucose disposal but did not affect the sensitivity of whole body glucose disposal or insulin suppressability of hepatic glucose production. Compared with LS, however, acute exercise did not “normalize” the insulin responsiveness of whole body glucose disposal. Thus a single acute exercise session improves but does not normalize whole body insulin resistance in the SHHF/Mcc-facp rat.


2013 ◽  
Vol 305 (7) ◽  
pp. E879-E889 ◽  
Author(s):  
Britt Christensen ◽  
Birgitte Nellemann ◽  
Mads S. Larsen ◽  
Line Thams ◽  
Peter Sieljacks ◽  
...  

Erythropoietin (Epo) administration improves aerobic exercise capacity and insulin sensitivity in renal patients and also increases resting energy expenditure (REE). Similar effects are observed in response to endurance training. The aim was to compare the effects of endurance training with erythropoiesis-stimulating agent (ESA) treatment in healthy humans. Thirty-six healthy untrained men were randomized to 10 wk of either: 1) placebo ( n = 9), 2) ESA ( n = 9), 3) endurance training ( n = 10), or 4) ESA and endurance training ( n = 8). In a single-blinded design, ESA/placebo was injected one time weekly. Training consisted of biking for 1 h at 65% of wattmax three times per week. Measurements performed before and after the intervention were as follows: body composition, maximal oxygen uptake, insulin sensitivity, REE, and palmitate turnover. Uncoupling protein 2 (UCP2) mRNA levels were assessed in skeletal muscle. Fat mass decreased after training ( P = 0.003), whereas ESA induced a small but significant increase in intrahepatic fat ( P = 0.025). Serum free fatty acid (FFA) levels and palmitate turnover decreased significantly in response to training, whereas the opposite pattern was found after ESA. REE corrected for lean body mass increased in response to ESA and training, and muscle UCP2 mRNA levels increased after ESA ( P = 0.035). Insulin sensitivity increased only after training ( P = 0.011). In conclusion: 1) insulin sensitivity is not improved after ESA treatment despite improved exercise capacity, 2) the calorigenic effects of ESA may be related to increased UCP2 gene expression in skeletal muscle, and 3) training and ESA exert opposite effects on lipolysis under basal conditions, increased FFA levels and liver fat fraction was observed after ESA treatment.


2006 ◽  
Vol 291 (5) ◽  
pp. E1131-E1140 ◽  
Author(s):  
Michael Christopher ◽  
Christian Rantzau ◽  
Zhi-Ping Chen ◽  
Rodney Snow ◽  
Bruce Kemp ◽  
...  

AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-β-d-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FAOX) blockade by methylpalmoxirate (MP; 5 × 12 hourly 10 mg/kg doses). During the basal equilibrium period (0–150 min), fasting dogs ( n = 8) were infused with [3-3H]glucose followed by either 2-h saline or AICAR (1.5–2.0 mg·kg−1·min−1) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FAOX blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (Rd tissue), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCRg) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC∼pSer221) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and Rd tissue responses were markedly attenuated, but MCRg and GF increased significantly. SkM substrates were unchanged, but ACC∼pSer221 rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FAox blockade.


2017 ◽  
Vol 29 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Kevin R. Short ◽  
April M. Teague ◽  
Jake C. Klein ◽  
Elizabeth Malm-Buatsi ◽  
Dominic Frimberger

Purpose:Whole body or leg exercise before a meal can increase insulin sensitivity, but it is unclear whether the same can occur with upper body exercise since a smaller muscle mass is activated. We measured the impact of a single session of handcycle exercise on glucose tolerance and insulin sensitivity.Methods:Nonambulatory (Non-Amb) adolescents with spina bifida or cerebral palsy (4F/3M), or ambulatory peers (Control, 4F/7M) completed 2 glucose tolerance tests on separate days, preceded by either rest or a 35-min bout of moderate-to-vigorous intermittent handcycle exercise.Results:The Non-Amb group had higher body fat (mean ± SD: 38 ± 12%, Control: 24 ± 9, p = .041) but similar VO2peak (17.7 ± 6.1 ml/kg/min, Control: 21.1 ± 7.9). Fasting glucose and insulin were normal for all participants. Compared with the rest trial, exercise resulted in a reduction in glucose area under the curve (11%, p = .008) without a significant group x trial interaction and no difference in the magnitude of change between groups. Insulin sensitivity was increased 16% (p = .028) by exercise in the Control group but was not significantly changed in the Non-Amb group.Conclusion:A single bout of handcycle exercise improves glucose tolerance in adolescents with and without mobility limitations and could therefore help maintain or improve metabolic health.


2011 ◽  
Vol 301 (3) ◽  
pp. E517-E526 ◽  
Author(s):  
Summer M. Raines ◽  
Oliver C. Richards ◽  
Lindsay R. Schneider ◽  
Kathryn L. Schueler ◽  
Mary E. Rabaglia ◽  
...  

Hepatic vasculature is not thought to pose a permeability barrier for diffusion of macromolecules from the bloodstream to hepatocytes. In contrast, in extrahepatic tissues, the microvasculature is critically important for insulin action, because transport of insulin across the endothelial cell layer is rate limiting for insulin-stimulated glucose disposal. However, very little is known concerning the role in this process of pericytes, the mural cells lining the basolateral membrane of endothelial cells. PDGF-B is a growth factor involved in the recruitment and function of pericytes. We studied insulin action in mice expressing PDGF-B lacking the proteoglycan binding domain, producing a protein with a partial loss of function (PDGF-B ret/ ret). Insulin action was assessed through measurements of insulin signaling and insulin and glucose tolerance tests. PDGF-B deficiency enhanced hepatic vascular transendothelial transport. One outcome of this change was an increase in hepatic insulin signaling. This correlated with enhanced whole body glucose homeostasis and increased insulin clearance from the circulation during an insulin tolerance test. In obese mice, PDGF-B deficiency was associated with an 80% reduction in fasting insulin and drastically reduced insulin secretion. These mice did not have significantly higher glucose levels, reflecting a dramatic increase in insulin action. Our findings show that, despite already having a high permeability, hepatic transendothelial transport can be further enhanced. To the best of our knowledge, this is the first study to connect PDGF-B-induced changes in hepatic sinusoidal transport to changes in insulin action, demonstrating a link between PDGF-B signaling and insulin sensitivity.


2001 ◽  
Vol 86 (4) ◽  
pp. 515-519 ◽  
Author(s):  
Nancy W. Hua ◽  
Riccardo A. Stoohs ◽  
Francesco S. Facchini

The efficacy of insulin in stimulating whole-body glucose disposal (insulin sensitivity) was quantified using direct methodology in thirty lacto-ovo vegetarians and in thirty meat-eaters. All subjects were adult, lean (BMI <23 kg/m2), healthy and glucose tolerant. Lacto-ovo vegetarians were more insulin sensitive than meat-eaters, with a steady-state plasma glucose (mmol/l) of 4·1 (95 % CI 3·5, 5·0)v.6·9 (95 % CI 5·2, 7·5; P=0·0028) respectively. In addition, lacto-ovo vegetarians had lower body Fe stores, as indicated by a serum ferritin concentration (μg/l) of 35 (95 % CI 21, 49) compared with 72 (95 % CI 45, 100) for meat-eaters (P=0·0012). To test whether or not Fe status might modulate insulin sensitivity, body Fe was lowered by phlebotomy in six male meat-eaters to levels similar to that seen in vegetarians, with a resultant approximately 40 % enhancement of insulin-mediated glucose disposal (P=0·0008). Our results demonstrate that lacto-ovo vegetarians are more insulin sensitive and have lower Fe stores than meat-eaters. In addition, it seems that reduced insulin sensitivity in meat-eaters is amenable to improvement by reducing body Fe. The latter finding is in agreement with results from animal studies where, no matter how induced, Fe depletion consistently enhanced glucose disposal.


Sign in / Sign up

Export Citation Format

Share Document