Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine

2014 ◽  
Vol 306 (5) ◽  
pp. E469-E482 ◽  
Author(s):  
Susanne Keipert ◽  
Mario Ost ◽  
Kornelia Johann ◽  
Francine Imber ◽  
Martin Jastroch ◽  
...  

UCP1-Tg mice with ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) are a model of improved substrate metabolism and increased longevity. Analysis of myokine expression showed an induction of fibroblast growth factor 21 (FGF21) in SM, resulting in approximately fivefold elevated circulating FGF21 in UCP1-Tg mice. Despite a reduced muscle mass, UCP1-Tg mice showed no evidence for a myopathy or muscle autophagy deficiency but an activation of integrated stress response (ISR; eIF2α/ATF4) in SM. Targeting mitochondrial function in vitro by treating C2C12 myoblasts with the uncoupler FCCP resulted in a dose-dependent activation of ISR, which was associated with increased expression of FGF21, which was also observed by treatment with respiratory chain inhibitors antimycin A and myxothiazol. The cofactor required for FGF21 action, β-klotho, was expressed in white adipose tissue (WAT) of UCP1-Tg mice, which showed an increased browning of WAT similar to what occurred in altered adipocyte morphology, increased brown adipocyte markers (UCP1, CIDEA), lipolysis (HSL phosphorylation), and respiratory capacity. Importantly, treatment of primary white adipocytes with serum of transgenic mice resulted in increased UCP1 expression. Additionally, UCP1-Tg mice showed reduced body length through the suppressed IGF-I-GH axis and decreased bone mass. We conclude that the induction of FGF21 as a myokine is coupled to disturbance of mitochondrial function and ISR activation in SM. FGF21 released from SM has endocrine effects leading to increased browning of WAT and can explain the healthy metabolic phenotype of UCP1-Tg mice. These results confirm muscle as an important endocrine regulator of whole body metabolism.

2009 ◽  
Vol 297 (6) ◽  
pp. R1761-R1768 ◽  
Author(s):  
Bruce C. Frier ◽  
Deon B. Williams ◽  
David C. Wright

Adipose tissue is recognized as a key player in the regulation of whole body metabolism. Apelin, is a recently identified adipokine that when given to mice results in increases in skeletal muscle uncoupling protein 3 (UCP3) content. Similarly, acute apelin treatment has been shown to increase the activity of 5′-AMP-activated protein kinase (AMPK), a reputed mediator of skeletal muscle mitochondrial biogenesis. Given these findings, we sought to determine the effects of apelin on skeletal muscle mitochondrial content. Male Wistar rats were given daily intraperitoneal injections of apelin-13 (100 nmol/kg) for 2 wk. We made the novel observation that the activities of citrate synthase, cytochrome c oxidase, and β-hydroxyacyl coA dehydrogenase (βHAD) were increased in triceps but not heart and soleus muscles from apelin-treated rats. When confirming these results we found that both nuclear and mitochondrial-encoded subunits of the respiratory chain were increased in triceps from apelin-treated rats. Similarly, apelin treatment increased the protein content of components of the mitochondrial import and assembly pathway. The increases in mitochondrial marker proteins were associated with increases in proliferator-activated receptor-γ coactivator-1 (PGC-1β) but not PGC-1α or Pgc-1-related co-activator (PRC) mRNA expression. Chronic and acute apelin treatment did not increase the protein content and/or phosphorylation status of AMPK and its downstream substrate acetyl-CoA carboxylase. These findings are the first to demonstrate that apelin treatment can induce skeletal muscle mitochondrial content. Given the lack of an effect of apelin on AMPK signaling and PGC-1α mRNA expression, these results suggest that apelin increases skeletal muscle mitochondrial content through a mechanism that is distinct from that of more robust physiological stressors.


2015 ◽  
Vol 228 (3) ◽  
pp. 127-134 ◽  
Author(s):  
Amanda E Brandon ◽  
Ella Stuart ◽  
Simon J Leslie ◽  
Kyle L Hoehn ◽  
David E James ◽  
...  

An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12–16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42–54 weeks of age, male WT and Acc2−/− mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2−/− mice, aged Acc2−/− mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2−/− mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic–euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2−/− mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action.


2021 ◽  
Author(s):  
Mingsheng Ye ◽  
Liping Luo ◽  
Qi Guo ◽  
Guanghua Lei ◽  
Chao Zeng ◽  
...  

Brown adipose tissue (BAT) is emerging as a target to beat obesity through the dissipation of chemical energy to heat. However, the molecular mechanisms of brown adipocyte thermogenesis remain to be further elucidated. Here, we show that KCTD10, a member of the polymerase delta-interacting protein 1 (PDIP1) family, was reduced in BAT by cold stress and a β3 adrenoceptor agonist. Moreover, KCTD10 level increased in the BAT of obese mice, and KCTD10 overexpression attenuates uncoupling protein 1 (UCP1) expression in primary brown adipocytes. BAT-specific KCTD10 knockdown mice had increased thermogenesis and cold tolerance protecting from high fat diet (HFD)-induced obesity. Conversely, overexpression of KCTD10 in BAT caused reduced thermogenesis, cold intolerance, and obesity. Mechanistically, inhibiting Notch signaling restored the KCTD10 overexpression suppressed thermogenesis. Our study presents that KCTD10 serves as an upstream regulator of notch signaling pathway to regulate BAT thermogenesis and whole-body metabolic function.


2003 ◽  
Vol 23 (3) ◽  
pp. 1085-1094 ◽  
Author(s):  
Leanne Wilson-Fritch ◽  
Alison Burkart ◽  
Gregory Bell ◽  
Karen Mendelson ◽  
John Leszyk ◽  
...  

ABSTRACT White adipose tissue is an important endocrine organ involved in the control of whole-body metabolism, insulin sensitivity, and food intake. To better understand these functions, 3T3-L1 cell differentiation was studied by using combined proteomic and genomic strategies. The proteomics approach developed here exploits velocity gradient centrifugation as an alternative to isoelectric focusing for protein separation in the first dimension. A 20- to 30-fold increase in the concentration of numerous mitochondrial proteins was observed during adipogenesis, as determined by mass spectrometry and database correlation analysis. Light and electron microscopy confirmed a large increase in the number of mitochondrion profiles with differentiation. Furthermore, mRNA profiles obtained by using Affymetrix GeneChips revealed statistically significant increases in the expression of many nucleus-encoded mitochondrial genes during adipogenesis. Qualitative changes in mitochondrial composition also occur during adipose differentiation, as exemplified by increases in expression of proteins involved in fatty acid metabolism and of mitochondrial chaperones. Furthermore, the insulin sensitizer rosiglitazone caused striking changes in mitochondrial shape and expression of selective mitochondrial proteins. Thus, although mitochondrial biogenesis has classically been associated with brown adipocyte differentiation and thermogenesis, our results reveal that mitochondrial biogenesis and remodeling are inherent to adipose differentiation per se and are influenced by the actions of insulin sensitizers.


2019 ◽  
Vol 317 (5) ◽  
pp. E742-E750 ◽  
Author(s):  
Tania Quesada-López ◽  
Aleix Gavaldà-Navarro ◽  
Samantha Morón-Ros ◽  
Laura Campderrós ◽  
Roser Iglesias ◽  
...  

Adaptive induction of thermogenesis in brown adipose tissue (BAT) is essential for the survival of mammals after birth. We show here that G protein-coupled receptor protein 120 (GPR120) expression is dramatically induced after birth in mouse BAT. GPR120 expression in neonatal BAT is the highest among GPR120-expressing tissues in the mouse at any developmental stage tested. The induction of GPR120 in neonatal BAT is caused by postnatal thermal stress rather than by the initiation of suckling. GPR120-null neonates were found to be relatively intolerant to cold: close to one-third did not survive at 21°C, but all such pups survived at 25°C. Heat production in BAT was significantly impaired in GPR120-null pups. Deficiency in GPR120 did not modify brown adipocyte morphology or the anatomical architecture of BAT, as assessed by electron microscopy, but instead impaired the expression of uncoupling protein-1 and the fatty acid oxidation capacity of neonatal BAT. Moreover, GPR120 deficiency impaired fibroblast growth factor 21 (FGF21) gene expression in BAT and reduced plasma FGF21 levels. These results indicate that GPR120 is essential for neonatal adaptive thermogenesis.


2008 ◽  
Vol 32 (3) ◽  
pp. 352-359 ◽  
Author(s):  
Yvonne Katterle ◽  
Susanne Keipert ◽  
Jana Hof ◽  
Susanne Klaus

We evaluated the effect of skeletal muscle mitochondrial uncoupling on energy and glucose metabolism under different diets. For 3 mo, transgenic HSA-mUCP1 mice with ectopic expression of uncoupling protein 1 in skeletal muscle and wild-type littermates were fed semisynthetic diets with varying macronutrient ratios (energy % carbohydrate-protein-fat): HCLF (41:42:17), HCHF (41:16:43); LCHF (11:45:44). Body composition, energy metabolism, and insulin resistance were assessed by NMR, indirect calorimetry, and insulin tolerance test, respectively. Gene expression in different organs was determined by real-time PCR. In wild type, both high-fat diets led to an increase in body weight and fat. HSA-mUCP1 mice considerably increased body fat on HCHF but stayed lean on the other diets. Irrespective of differences in body fat content, HSA-mUCP1 mice showed higher insulin sensitivity and decreased plasma insulin and liver triglycerides. Respiratory quotient and gene expression indicated overall increased carbohydrate oxidation of HSA-mUCP1 but a preferential channeling of fatty acids into muscle rather than liver with high-fat diets. Evidence for increased lipogenesis in white fat of HSA-mUCP1 mice suggests increased energy dissipating substrate cycling. Retinol binding protein 4 expression in white fat was increased in HSA-mUCP1 mice despite increased insulin sensitivity, excluding a causal role in the development of insulin resistance. We conclude that skeletal muscle mitochondrial uncoupling does not protect from the development of obesity in all circumstances. Rather it can lead to a “healthy” obese phenotype by preserving insulin sensitivity and a high metabolic flexibility, thus protecting from the development of obesity associated disturbances of glucose homeostasis.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Elisa Benetti ◽  
Raffaella Mastrocola ◽  
Mara Rogazzo ◽  
Fausto Chiazza ◽  
Manuela Aragno ◽  
...  

Peroxisome Proliferator Activated Receptor (PPAR)-δagonists may serve for treating metabolic diseases. However, the effects of PPAR-δagonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR-δagonist, GW0742 (1 mg/kg/day for 16 weeks), in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS), the major sweetener in foods and soft-drinks (15% wt/vol in drinking water). Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR-δupregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR-δactivation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades.


2012 ◽  
Vol 303 (10) ◽  
pp. R1071-R1079 ◽  
Author(s):  
Scott D. Clarke ◽  
Kevin Lee ◽  
Zane B. Andrews ◽  
Robert Bischof ◽  
Fahri Fahri ◽  
...  

This study aimed to determine whether postprandial temperature excursions in skeletal muscle are consistent with thermogenesis or altered blood flow. Temperature probes were implanted into the vastus lateralis muscle of ovariectomized ewes, and blood flow was assessed using laser-Doppler flowmetry (tissue flow) and transit-time ultrasound flowmetry (femoral artery flow). The animals were program-fed between 1100 and 1600, and temperature and blood flow were measured during intravenous administration of either isoprenaline or phenylephrine and during feeding and meal anticipation. In addition, muscle biopsies were collected prefeeding and postfeeding to measure uncoupling protein (UCP) expression and mitochondrial function, as well as indices of calcium cycling (ryanodine 1 receptor: RyR1 and sarcoendoplasmic calcium-dependent ATPases SERCA1/ SERCA2a). Isoprenaline increased femoral artery blood flow, whereas phenylephrine reduced blood flow. At high doses only, isoprenaline treatment increased heat production in muscle. Phenylephrine treatment did not alter muscle temperature. Meal anticipation was evoked in fasted animals (previously program-fed) that were housed beside animals that were fed. Increases in muscle temperature were elicited by feeding and meal anticipation, without changes in blood flow during either paradigm. Analyses of respiration in isolated mitochondria indicated that the postprandial increase in heat production was associated with an increase in state 4 respiration, without increased UCP1, UCP2, or UCP3 expression. Feeding increased the expression of RyR1 and SERCA2a. We conclude that excursions in muscle temperature may occur independent of blood flow, suggesting that postprandial heat production is driven by altered mitochondrial function and changes in calcium cycling.


Science ◽  
2021 ◽  
Vol 373 (6551) ◽  
pp. 223-225
Author(s):  
Traver Wright ◽  
Randall W. Davis ◽  
Heidi C. Pearson ◽  
Michael Murray ◽  
Melinda Sheffield-Moore

Basal metabolic rate generally scales with body mass in mammals, and variation from predicted levels indicates adaptive metabolic remodeling. As a thermogenic adaptation for living in cool water, sea otters have a basal metabolic rate approximately three times that of the predicted rate; however, the tissue-level source of this hypermetabolism is unknown. Because skeletal muscle is a major determinant of whole-body metabolism, we characterized respiratory capacity and thermogenic leak in sea otter muscle. Compared with that of previously sampled mammals, thermogenic muscle leak capacity was elevated and could account for sea otter hypermetabolism. Muscle respiratory capacity was modestly elevated and reached adult levels in neonates. Premature metabolic development and high leak rate indicate that sea otter muscle metabolism is regulated by thermogenic demand and is the source of basal hypermetabolism.


Sign in / Sign up

Export Citation Format

Share Document