scholarly journals Interleukin-6 amplifies glucagon secretion: coordinated control via the brain and pancreas

2014 ◽  
Vol 307 (10) ◽  
pp. E896-E905 ◽  
Author(s):  
Tammy M. Barnes ◽  
Yolanda F. Otero ◽  
Amicia D. Elliott ◽  
Alicia D. Locke ◽  
Carlo M. Malabanan ◽  
...  

Inappropriate glucagon secretion contributes to hyperglycemia in inflammatory disease. Previous work implicates the proinflammatory cytokine interleukin-6 (IL-6) in glucagon secretion. IL-6-KO mice have a blunted glucagon response to lipopolysaccharide (LPS) that is restored by intravenous replacement of IL-6. Given that IL-6 has previously been demonstrated to have a transcriptional (i.e., slow) effect on glucagon secretion from islets, we hypothesized that the rapid increase in glucagon following LPS occurred by a faster mechanism, such as by action within the brain. Using chronically catheterized conscious mice, we have demonstrated that central IL-6 stimulates glucagon secretion uniquely in the presence of an accompanying stressor (hypoglycemia or LPS). Contrary to our hypothesis, however, we found that IL-6 amplifies glucagon secretion in two ways; IL-6 not only stimulates glucagon secretion via the brain but also by direct action on islets. Interestingly, IL-6 augments glucagon secretion from both sites only in the presence of an accompanying stressor (such as epinephrine). Given that both adrenergic tone and plasma IL-6 are elevated in multiple inflammatory diseases, the interactions of the IL-6 and catecholaminergic signaling pathways in regulating GCG secretion may contribute to our present understanding of these diseases.

Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM).The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated at a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM). The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


2021 ◽  
Vol 22 (11) ◽  
pp. 6071
Author(s):  
Suzanne Gascon ◽  
Jessica Jann ◽  
Chloé Langlois-Blais ◽  
Mélanie Plourde ◽  
Christine Lavoie ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood–brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1353.2-1353
Author(s):  
A. Yadon ◽  
D. Ruelas ◽  
G. Min-Oo ◽  
J. Taylor ◽  
M. R. Warr

Background:Rheumatoid arthritis (RA) is characterized by chronic, uncontrolled joint inflammation and tissue destruction. Macrophages are thought to be key mediators in both the initiation and perpetuation of this pathology.1,2The RA synovium contains a complex inflammatory milieu that can stimulate macrophage-dependent production of proinflammatory cytokines through multiple signaling pathways.1,2Existing evidence indicates that toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) along with their agonists, damage-associated molecular patterns (DAMPs) and IL-1β, are highly expressed in RA joints and are important mediators of synovial macrophage activation and proinflammatory cytokine production.1-9IRAK4 (interleukin-1 receptor-associated kinase 4) is a serine/threonine kinase that facilitates TLR and IL-1R signaling in many cell types, including macrophages.10IRAK4 inhibition represents an opportunity to reduce proinflammatory cytokine production in the joints of patients with RA.Objectives:To investigate the effect of a highly selective IRAK4 inhibitor on proinflammatory cytokine production from human macrophages stimulated with synovial fluid from patients with RA.Methods:Primary human monocytes from 2 independent donors were differentiated for 6 days with granulocyte-macrophage colony-stimulating factor (GM-CSF) to generate human monocyte-derived macrophages (hMDMs). hMDMs were then pretreated with an IRAK4 inhibitor for 1 hour and subsequently stimulated for 24 hours with RA synovial fluid from 5 patients. Culture supernatants were then assessed for secretion of proinflammatory cytokines by MesoScale Discovery.Results:RA synovial fluid stimulation of hMDMs resulted in the production of several proinflammatory cytokines, including IL-6, IL-8, and TNFα. Pretreatment of hMDMs with an IRAK4 inhibitor resulted in the dose-dependent inhibition of IL-6, IL-8, and TNFα production, with an average EC50± SD of 27 ± 31, 26 ± 41, and 28 ± 22 nM, respectively. Maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 76 ± 8.8, 73 ± 15, and 77 ± 13, respectively. To evaluate the specific IRAK4-dependent signaling pathways mediating this response, hMDMs were pretreated with inhibitors of TLR4 (TAK242) and IL-1R (IL-1RA) prior to stimulation with RA synovial fluid. Both TAK242 and IL-1RA inhibited proinflammatory cytokine production. For TAK242, maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 39 ± 25, 48 ± 24, and 50 ± 21, respectively. For IL-1RA maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 18 ± 18, 20 ± 23, and 16 ± 18, respectively. The broad range of inhibition across each stimulation highlights the complexity and variability in the signaling pathways mediating proinflammatory cytokine production from hMDMs stimulated with RA synovial fluid, but demonstrates that RA synovial fluid can stimulate proinflammatory cytokine production in hMDMs, at least partly, through IRAK4-dependent pathways.Conclusion:This work demonstrates that IRAK4 inhibition can suppress proinflammatory cytokine production from macrophages stimulated with synovial fluid from patients with RA and supports a potential pathophysiological role for IRAK4 in perpetuating chronic inflammation in RA.References:[1]Smolen JS, et al.Nat Rev Dis Primers.2018;4:18001.[2]Udalova IA, et al.Nat Rev Rheumatol.2016;12(8):472-485.[3]Joosten LAB, et al.Nat Rev Rheumatol.2016;12(6):344-357.[4]Huang QQ, Pope RM.Curr Rheumatol Rep.2009;11(5):357-364.[5]Roh JS, Sohn DH.Immune Netw.2018;18(4):e27.[6]Sacre SM, et al.Am J Pathol.2007;170(2):518-525.[7]Ultaigh SNA, et al.Arthritis Res Ther.2011;13(1):R33.[8]Bottini N, Firestein GS.Nat Rev Rheumatol.2013;9(1):24-33.[9]Firestein GS, McInnes IB.Immunity.2017;46(2):183-196.[10]Janssens S, Beyaert R.Mol Cell.2003;11(2):293-302.Disclosure of Interests:Adam Yadon Employee of: Gilead, Debbie Ruelas Employee of: Gilead, Gundula Min-Oo Employee of: Gilead, James Taylor Employee of: Gilead, Matthew R. Warr Employee of: Gilead


1998 ◽  
Vol 88 (4) ◽  
pp. 1036-1042 ◽  
Author(s):  
Sunil Eappen ◽  
Igor Kissin

Background Subarachnoid bupivacaine blockade has been reported to reduce thiopental and midazolam hypnotic requirements in patients. The purpose of this study was to examine if local anesthetically induced lumbar intrathecal blockade would reduce thiopental requirements for blockade of motor responses to noxious and nonnoxious stimuli in rats. Methods After intrathecal and external jugular catheter placement, rats were assigned randomly to two groups in a crossover design study, with each rat to receive either 10 microl of 0.75% bupivacaine or 10 microl of normal saline intrathecally. The doses of intravenously administered thiopental required to ablate the eyelid reflex, to block the withdrawal reflex of a front limb digit, and to block the corneal reflex were compared. In two separate groups of animals, hemodynamic parameters and concentrations of thiopental in the brain were compared between intrathecally administered bupivacaine and saline. Results The thiopental dose required to block the described responses was decreased with intrathecally administered bupivacaine versus intrathecally administered saline from (mean +/- SD) 40 +/- 5 to 24 +/- 4 mg/kg (P < 0.001) for the eyelid reflex, from 51 +/- 6 to 29 +/- 6 mg/kg (P < 0.005) for front limb withdrawal, and from 67 +/- 8 to 46 +/- 8 mg/kg (P < 0.01) for the corneal reflex. The concentration of thiopental in the brain at the time of corneal reflex blockade for the group given bupivacaine was significantly lower than in the group given saline (24.1 vs. 35.8 microg/g, P = 0.02). Conclusion This study demonstrates that lumbar intrathecally administered local anesthetic blockade decreases anesthetic requirements for thiopental for a spectrum of end points tested. This effect is due neither to altered pharmacokinetics nor to a direct action of the local anesthetic on the brain; rather, it is most likely due to decreased afferent input.


2004 ◽  
Vol 24 (17) ◽  
pp. 7758-7768 ◽  
Author(s):  
William F. Schwindinger ◽  
Kathryn E. Giger ◽  
Kelly S. Betz ◽  
Anna M. Stauffer ◽  
Elaine M. Sunderlin ◽  
...  

ABSTRACT Emerging evidence suggests that the γ subunit composition of an individual G protein contributes to the specificity of the hundreds of known receptor signaling pathways. Among the twelve γ subtypes, γ3 is abundantly and widely expressed in the brain. To identify specific functions and associations for γ3, a gene-targeting approach was used to produce mice lacking the Gng3 gene (Gng3 −/−). Confirming the efficacy and specificity of gene targeting, Gng3 −/− mice show no detectable expression of the Gng3 gene, but expression of the divergently transcribed Bscl2 gene is not affected. Suggesting unique roles for γ3 in the brain, Gng3 −/− mice display increased susceptibility to seizures, reduced body weights, and decreased adiposity compared to their wild-type littermates. Predicting possible associations for γ3, these phenotypic changes are associated with significant reductions in β2 and αi3 subunit levels in certain regions of the brain. The finding that the Gng3 −/− mice and the previously reported Gng7 −/− mice display distinct phenotypes and different αβγ subunit associations supports the notion that even closely related γ subtypes, such as γ3 and γ7, perform unique functions in the context of the organism.


2021 ◽  
Author(s):  
Sanne C. Lith ◽  
Carlie J.M. de Vries

Abstract Nur77 is a nuclear receptor that has been implicated as a regulator of inflammatory disease. The expression of Nur77 increases upon stimulation of immune cells and is differentially expressed in chronically inflamed organs in human and experimental models. Furthermore, in a variety of animal models dedicated to study inflammatory diseases, changes in Nur77 expression alter disease outcome. The available studies comprise a wealth of information on the function of Nur77 in diverse cell types and tissues. Negative cross-talk of Nur77 with the NFκB signaling complex is an example of Nur77 effector function. An alternative mechanism of action has been established, involving Nur77-mediated modulation of metabolism in macrophages as well as in T cells. In this review, we summarize our current knowledge on the role of Nur77 in atherosclerosis, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and sepsis. Detailed insight in the control of inflammatory responses will be essential in order to advance Nur77-targeted therapeutic interventions in inflammatory disease.


2021 ◽  
pp. 112067212110676
Author(s):  
Ahmad Abdel-Aty ◽  
Ninani Kombo

Chronic inflammatory diseases can cause significant psychosocial stress in affected patients. Few studies have examined the psychological effects of ocular inflammatory disease and no studies have examined the psychological effects of scleritis. In this study we evaluate the prevalence of mental health disorders in scleritis patients and we conduct a comprehensive review of the literature on the mental health effects of ocular inflammatory diseases. 162 patients (195 eyes) presenting to a tertiary care center with scleritis were identified. At least one comorbid mental health disorder was diagnosed in 35 patients (21.6%), most commonly major depression in 11.7%, generalized anxiety disorder in 9.3%, and substance use disorder in 6.2%. There were no significant differences in the length of an episode of scleritis or in the probability of symptom resolution between patients with a mental health disorder and other patients. In a review of the literature, 30 manuscripts met the inclusion criteria. The majority of manuscripts (83.3%) were focused on uveitis patients. Eight of these studies were focused on patients with uveitis in the context of systemic disease. The most commonly reported mental health disorders reported were anxiety and depression. An average of 31.3% of patients with ocular inflammatory disease had depression and 35.0% had anxiety. Similar to other chronic illnesses, ocular inflammatory disease may be a significant psychosocial stressor. Future studies will further elucidate the relationship between these diseases and mental health.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Gabriella Kartz ◽  
Moua Yang ◽  
Andrea Sanchez ◽  
Roy Silverstein

CD36 acts as an important participant in the prothrombotic state associated with chronic inflammatory diseases such as atherosclerosis and diabetes by serving as a signaling relay point for danger-associated molecular patterns (DAMPs), including oxidized low-density lipoproteins (oxLDL) and advanced glycated proteins. Although CD36-mediated signaling pathways have been well characterized in macrophages, less is known about CD36-mediated signaling in platelets. Our group identified important roles for specific Src family kinases (SFK) Lyn and Fyn, and for the guanine nucleotide exchange factors Vav1 and Vav3. Since platelet activation by the collagen receptor GPVI also involves downstream activation of SFKs, we now hypothesize that oxLDL signaling via CD36 primes platelets for hyperactivity by activating components of the GPVI signaling pathway. To test this hypothesis, we treated fluorescently labeled murine platelets with either native LDL (nLDL) or oxLDL and exposed them to immobilized collagen under defined shear flow in a microfluidic flow chamber. A significant increase (~1.2 fold) in platelet accumulation was observed with oxLDL treatment. No increase in accumulation was observed in oxLDL-treated platelets from cd36 null mice, suggesting that this phenomenon was CD36-dependent. Furthermore, addition of tirofiban ablated the oxLDL-induced increase in platelet accumulation, suggesting that the increase was likely due to enhanced platelet-platelet contacts (i.e. enhanced platelet activation). This supports previous data from our laboratory showing that treatment of murine platelets with oxLDL alone resulted in activation of αIIbβ3 integrin. Additionally, oxLDL-treated platelets from vav1/vav3 double null mice phenocopied cd36 null platelets and displayed no increase in platelet accumulation compared to nLDL-treated platelets, strengthening the functional link between CD36 and GPVI signaling pathways. These data suggest a functional link between CD36 and GPVI signaling pathways in platelets, which may contribute to platelet hyperactivity in athero-inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document