scholarly journals MiR-206 is expressed in pancreatic islets and regulates glucokinase activity

2016 ◽  
Vol 311 (1) ◽  
pp. E175-E185 ◽  
Author(s):  
Manjula Vinod ◽  
Jay V. Patankar ◽  
Vinay Sachdev ◽  
Saša Frank ◽  
Wolfgang F. Graier ◽  
...  

Glucose homeostasis is a complex indispensable process, and its dysregulation causes hyperglycemia and type 2 diabetes mellitus. Glucokinase (GK) takes a central role in these pathways and is thus rate limiting for glucose-stimulated insulin secretion (GSIS) from pancreatic islets. Several reports have described the transcriptional regulation of Gck mRNA, whereas its posttranscriptional mechanisms of regulation, especially those involving microRNAs (miR), are poorly understood. In this study, we investigated the role of miR-206 as a posttranscriptional regulator of Gck. In addition, we examined the effects of miR-206 on glucose tolerance, GSIS, and gene expression in control and germ line miR-206 knockout (KO) mice fed either with chow or high-fat diet (HFD). MiR-206 was found in Gck-expressing tissues and was differentially altered in response to HFD feeding. Pancreatic islets showed the most profound induction in the expression of miR-206 in response to HFD. Chow- and HFD-fed miR-206KO mice have improved glucose tolerance and GSIS but unaltered insulin sensitivity. In silico analysis of Gck mRNA revealed a conserved 8-mer miR-206 binding site. Hence, the predicted regulation of Gck by miR-206 was confirmed in reporter and GK activity assays. Concomitant with increased GK activity, miR-206KO mice had elevated liver glycogen content and plasma lactate concentrations. Our findings revealed a novel mechanism of posttranscriptional regulation of Gck by miR-206 and underline the crucial role of pancreatic islet miR-206 in the regulation of whole body glucose homeostasis in a murine model that mimics the metabolic syndrome.

Endocrinology ◽  
2016 ◽  
Vol 157 (9) ◽  
pp. 3452-3461 ◽  
Author(s):  
Anton E. Ludvik ◽  
Carolina M. Pusec ◽  
Medha Priyadarshini ◽  
Anthony R. Angueira ◽  
Cong Guo ◽  
...  

In a recent genome-wide association study, hexokinase domain-containing protein 1, or HKDC1, was found to be associated with gestational glucose levels during 2-hour glucose tolerance tests at 28 weeks of pregnancy. Because our understanding of the mediators of gestational glucose homeostasis is incomplete, we have generated the first transgenic mouse model to begin to understand the role of HKDC1 in whole-body glucose homeostasis. Interestingly, deletion of both HKDC1 alleles results in in utero embryonic lethality. Thus, in this study, we report the in vivo role of HKDC1 in whole-body glucose homeostasis using a heterozygous-deleted HKDC1 mouse model (HKDC1+/−) as compared with matched wild-type mice. First, we observed no weight, fasting or random glucose, or fasting insulin abnormalities with aging in male and female HKDC1+/− mice. However, during glucose tolerance tests, glucose levels were impaired in both female and male HKDC1+/− mice at 15, 30, and 120 minutes at a later age (28 wk of age). These glucose tolerance differences also existed in the female HKDC1+/− mice at earlier ages but only during pregnancy. And finally, the impaired glucose tolerance in HKDC1+/− mice was likely due to diminished whole-body glucose use, as indicated by the decreased hepatic energy storage and reduced peripheral tissue uptake of glucose in HKDC1+/− mice. Collectively, these data highlight that HKDC1 is needed to maintain whole-body glucose homeostasis during pregnancy but also with aging, possibly through its role in glucose use.


2020 ◽  
Vol 111 (4) ◽  
pp. 864-876
Author(s):  
Anne K Eriksen ◽  
Carl Brunius ◽  
Mohsen Mazidi ◽  
Per M Hellström ◽  
Ulf Risérus ◽  
...  

ABSTRACT Background A whole-grain (WG)–rich diet has shown to have potential for both prevention and treatment of the metabolic syndrome (MetS), which is a cluster of risk factors that increase the risk of type 2 diabetes and cardiovascular disease. Different WGs may have different health effects. WG rye, in particular, may improve glucose homeostasis and blood lipids, possibly mediated through fermentable dietary fiber and lignans. Recent studies have also suggested a crucial role of the gut microbiota in response to WG. Objectives The aim was to investigate WG rye, alone and with lignan supplements [secoisolariciresinol diglucoside (SDG)], and WG wheat diets on glucose tolerance [oral-glucose-tolerance test (OGTT)], other cardiometabolic outcomes, enterolignans, and microbiota composition. Moreover, we exploratively evaluated the role of gut microbiota enterotypes in response to intervention diets. Methods Forty men with MetS risk profile were randomly assigned to WG diets in an 8-wk crossover study. The rye diet was supplemented with 280 mg SDG at weeks 4–8. Effects of treatment were evaluated by mixed-effects modeling, and effects on microbiota composition and the role of gut microbiota as a predictor of response to treatment were analyzed by random forest plots. Results The WG rye diet (± SDG supplements) did not affect the OGTT compared with WG wheat. Total and LDL cholesterol were lowered (−0.06 and −0.09 mmol/L, respectively; P < 0.05) after WG rye compared with WG wheat after 4 wk but not after 8 wk. WG rye resulted in higher abundance of Bifidobacterium [fold-change (FC) = 2.58, P < 0.001] compared with baseline and lower abundance of Clostridium genus compared with WG wheat (FC = 0.54, P = 0.02). The explorative analyses suggest that baseline enterotype is associated with total and LDL-cholesterol response to diet. Conclusions WG rye, alone or with SDG supplementation, compared with WG wheat did not affect glucose metabolism but caused transient LDL-cholesterol reduction. The effect of WG diets appeared to differ according to enterotype. This trial was registered at www.clinicaltrials.gov as NCT02987595.


2006 ◽  
Vol 290 (6) ◽  
pp. E1304-E1312 ◽  
Author(s):  
Sheila R. Costford ◽  
Shehla N. Chaudhry ◽  
Mahmoud Salkhordeh ◽  
Mary-Ellen Harper

Uncoupling protein-3 (UCP3) is a poorly understood mitochondrial inner membrane protein expressed predominantly in skeletal muscle. The aim of this study was to examine the effects of the absence or constitutive physiological overexpression of UCP3 on whole body energy metabolism, glucose tolerance, and muscle triglyceride content. Congenic male UCP3 knockout mice ( Ucp3 −/−), wild-type, and transgenic UCP3 overexpressing (UCP3Tg) mice were fed a 10% fat diet for 4 or 8 mo after they were weaned. UCP3Tg mice had lower body weights and were less metabolically efficient than wild-type or Ucp3 −/− mice, but they were not hyperphagic. UCP3Tg mice had smaller epididymal white adipose tissue and brown adipose tissue (BAT) depots; however, there were no differences in muscle weights. Glucose and insulin tolerance tests revealed that both UCP3Tg and Ucp3 −/− mice were protected from development of impaired glucose tolerance and were more sensitive to insulin. 2-Deoxy-d-[1-3H]glucose tracer studies showed increased uptake of glucose into BAT and increased storage of liver glycogen in Ucp3 −/− mice. Assessments of intramuscular triglyceride (IMTG) revealed decreases in quadriceps of UCP3Tg mice compared with wild-type and Ucp3 −/− mice. When challenged with a 45% fat diet, Ucp3 −/− mice showed increased accumulation of IMTG compared with wild-type mice, which in turn had greater IMTG than UCP3Tg mice. Results are consistent with a role for UCP3 in preventing accumulation of triglyceride in both adipose tissue and muscle.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Allison Unger ◽  
Thomas Jetton ◽  
James Whitley ◽  
Jana Kraft

Abstract Objectives We hypothesized that the chronic consumption of unique dietary FA derived from dairy fat and echium oil, respectively, would affect the FA composition and content of the hepatic tissue and correlate with parameters of glucose homeostasis in an aged, genetically heterogeneous mouse population. Our objectives were to i) measure glucose homeostasis, ii) determine the FA composition of hepatic tissue, and iii) correlate physiologic data and hepatic FA content by diet and sex. Methods From one month of age, CD-1 male and female mice (n = 10/diet/sex) were fed either a high-fat (40% total energy) control diet comprising of the FA composition of the typical U.S. American diet (CO), or an isoenergetic diet with 30% of CO fat replaced with dairy fat (BO) or echium oil (EO) for the study duration of 13 months. Every three months, whole-body glucose homeostasis was assessed (i.e., glucose tolerance and insulin tolerance tests (GTT and ITT, respectively)). At the end of the study, hepatic tissue was collected and analyzed for FA composition via gas-liquid chromatography. Results Hepatic content of stearidonic acid (SDA; 18:4 n-3) and γ-linolenic acid (18:3 n-6) was greatest in EO-fed mice (P < .0001). Mice fed a BO-diet had the greatest hepatic content of total odd- and branched-chain FA (OBCFA) and conjugated linoleic acids (P < .0001), as well as a greater hepatic content of 18:1 isomers compared to EO-fed mice (P < .001). In EO-fed females, hepatic content of SDA correlated with improved glucose tolerance, as determined by GTT area under the curve (r = −.94; P < 0.01), and in EO-fed males, hepatic content of SDA was positively associated with improved insulin sensitivity (r = .79; P < 0.05). In BO-fed males, hepatic content of total OCFA was negatively correlated with fasting plasma insulin levels (r = −.83; P < 0.05), and hepatic content of total iso BCFA was associated with improved insulin sensitivity (r = −.89; P < 0.05). Conclusions These findings demonstrate that habitual consumption of unique FA derived from dairy fat and echium oil influences hepatic FA composition and content and correlates with improvements in whole-body glucose homeostasis in an aged population. Furthermore, this study suggests that dietary fat quality may be part of an effective preventative strategy for metabolic diseases such as T2D in the elderly. Funding Sources Armin Grams Memorial Research Award, UVM Robert Larner, M.D. College of Medicine; USDA-NIFA Hatch Fund (accession number: 1006628).


Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3040-3053 ◽  
Author(s):  
Isabelle Müller ◽  
Oliver G. Rössler ◽  
Christine Wittig ◽  
Michael D. Menger ◽  
Gerald Thiel

Expression of early growth response protein (Egr)-1, a protein of the Egr family of zinc finger transcription factors, is stimulated in glucose-treated pancreatic β-cells and insulinoma cells. The purpose of this study was to elucidate the role of Egr transcription factors in pancreatic β-cells in vivo. To overcome the problem associated with redundancy of functions between Egr proteins, conditional transgenic mice were generated expressing a dominant-negative mutant of Egr-1 in pancreatic β-cells. The Egr-1 mutant interferes with DNA binding of all Egr proteins and thus impairs the biological functions of the entire Egr family. Expression of the Egr-1 mutant reduced expression of TGFβ and basic fibroblast growth factor, known target genes of Egr-1, whereas the expression of Egr-1, Egr-3, Ets-like gene-1 (Elk-1), and specificity protein-3 was not changed in the presence of the Egr-1 mutant. Expression of the homeobox protein pancreas duodenum homeobox-1, a major regulator of insulin biosynthesis, was reduced in islets expressing the Egr-1 mutant. Accordingly, insulin mRNA and protein levels were reduced by 75 or 25%, respectively, whereas expression of glucagon and somatostatin was not altered after expression of the Egr-1 mutant in β-cells. Glucose tolerance tests revealed that transgenic mice expressing the Egr-1 mutant in pancreatic β-cells displayed impaired glucose tolerance. In addition, increased caspase-3/7 activity was detected as a result of transgene expression, leading to a 20% decrease of the size of the islets. These results show that Egr proteins play an important role in controlling insulin biosynthesis, glucose homeostasis, and islet size of pancreatic β-cells in vivo.


2020 ◽  
Author(s):  
Kathryn M. Spitler ◽  
Shwetha K. Shetty ◽  
Emily M. Cushing ◽  
Kelli L. Sylvers-Davie ◽  
Brandon S.J. Davies

ABSTRACTElevated plasma triglyceride levels are associated with metabolic disease. Angiopoietin-like protein 4 (ANGPTL4) regulates plasma triglyceride levels by inhibiting lipoprotein lipase (LPL). Our aim was to investigate the role of tissue-specific ANGPTL4 expression in the setting of high fat diet. Adipocyte- and hepatocyte-specific ANGPTL4 deficient mice were fed a high fat diet (60% kCal from fat) for either 12 weeks or 6 months. We performed plasma metabolic measurements, triglyceride clearance and uptake assays, LPL activity assays, and assessed glucose homeostasis. Mice lacking adipocyte ANGPTL4 recapitulated the triglyceride phenotypes of whole-body ANGPTL4 deficiency, whereas mice lacking hepatocyte ANGPTL4 had few triglyceride phenotypes. When fed a high fat diet (HFD), mice deficient in adipocyte ANGPTL4 gained more weight, had enhanced adipose LPL activity, and initially had improved glucose and insulin sensitivity. However, this improvement was largely lost after 6 months on HFD. Conversely, mice deficient in hepatocyte ANGPTL4 initially displayed no differences in glucose homeostasis, but began to manifest improved glucose tolerance after 6 months on HFD. We conclude that it is primarily adipocyte-derived ANGPTL4 that is responsible for regulating plasma triglyceride levels. Deficiency in adipocyte- or hepatocyte-derived ANGPTL4 may confer some protections against high fat diet induced dysregulation of glucose homeostasis.


Author(s):  
Marie-Sophie Nguyen-Tu ◽  
Aida Martinez-Sanchez ◽  
Isabelle Leclerc ◽  
Guy A. Rutter ◽  
Gabriela da Silva Xavier

AbstractTranscription factor 7-like 2 (TCF7L2) is a downstream effector of the Wnt/beta-catenin signalling pathway and its expression is critical for adipocyte development. The precise role of TCF7L2 in glucose and lipid metabolism in adult adipocytes remains to be defined. Here, we aim to investigate how changes in TCF7L2 expression in mature adipocytes affect glucose homeostasis. Tcf7l2 was selectively ablated from mature adipocytes in C57BL/6J mice using an adiponectin promoter-driven Cre recombinase to recombine alleles floxed at exon 1 of the Tcf7l2 gene. Mice lacking Tcf7l2 in mature adipocytes displayed normal body weight. Male mice exhibited normal glucose homeostasis at eight weeks of age. Male heterozygote knockout mice (aTCF7L2het) exhibited impaired glucose tolerance (AUC increased 1.14 ± 0.04 -fold, p=0.03), as assessed by intraperitoneal glucose tolerance test, and changes in fat mass at 16 weeks (increased by 1.4 ± 0.09-fold, p=0.007). Homozygote knockout mice exhibited impaired oral glucose tolerance at 16 weeks of age (AUC increased 2.15 ± 0.15-fold, p=0.0001). Islets of Langerhans exhibited impaired glucose-stimulated insulin secretion in vitro (decreased 0.54 ± 0.13-fold aTCF7L2KO vs control, p=0.02), but no changes in in vivo glucose-stimulated insulin secretion. Female mice in which one or two alleles of the Tcf7l2 gene was knocked out in adipocytes displayed no changes in glucose tolerance, insulin sensitivity or insulin secretion. Plasma levels of glucagon-like peptide-1 and gastric inhibitory polypeptide were lowered in knockout mice (decreased 0.57 ± 0.03-fold and 0.41 ± 0.12-fold, p=0.04 and p=0.002, respectively), whilst plasma free fatty acids and Fatty Acid Binding Protein 4 circulating levels were increased by 1.27 ± 0.07 and 1.78 ± 0.32-fold, respectively (p=0.05 and p=0.03). Mice with biallelic Tcf7l2 deletion exposed to high fat diet for 9 weeks exhibited impaired glucose tolerance (p=0.003 at 15 min after glucose injection) which was associated with reduced in vivo glucose-stimulated insulin secretion (decreased 0.51 ± 0.03-fold, p=0.02). Thus, our data indicate that loss of Tcf7l2 gene expression in adipocytes leads to impairments on metabolic responses which are dependent on gender, age and nutritional status. Our findings further illuminate the role of TCF7L2 in the maintenance of glucose homeostasis.


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Clinton R. Bruce ◽  
Steve Risis ◽  
Joanne R. Babb ◽  
Christine Yang ◽  
Robert S. Lee-Young ◽  
...  

FTY720 is a sphingosine-1-phosphate analog that has been shown to inhibit ceramide synthesis in vitro. Because ceramide accumulation in muscle is associated with insulin resistance, we aimed to examine whether FTY720 would prevent muscle ceramide accumulation in high fat-fed mice and subsequently improve glucose homeostasis. Male C57Bl/6 mice were fed either a chow or high fat-diet (HFD) for 6 wk, after which they were treated with vehicle or FTY720 (5 mg/kg) daily for a further 6 wk. The ceramide content of muscle was examined and insulin action was assessed. Whereas the HFD increased muscle ceramide, this was prevented by FTY720 treatment. This was not associated with alterations in the expression of genes involved in sphingolipid metabolism. Interestingly, the effects of FTY720 on lipid metabolism were not limited to ceramide because FTY720 also prevented the HFD-induced increase in diacylglycerol and triacylglycerol in muscle. Furthermore, the increase in CD36 mRNA expression induced by fat feeding was prevented in muscle of FTY720-treated mice. This was associated with an attenuation of the HFD-induced increase in palmitate uptake and esterification. In addition, FTY720 improved glucose homeostasis as demonstrated by a reduction in plasma insulin, an improvement in whole-body glucose tolerance, an increase in insulin-stimulated glucose uptake, and Akt phosphorylation in muscle. In conclusion, FTY720 exerts beneficial effects on muscle lipid metabolism that prevent lipid accumulation and improve glucose tolerance in high fat-fed mice. Thus, FTY720 and other compounds that target sphingosine-1-phosphate signaling may have therapeutic potential in treating insulin resistance.


2012 ◽  
Vol 303 (5) ◽  
pp. E587-E596 ◽  
Author(s):  
Lara Bonomi ◽  
Melissa Brown ◽  
Nathan Ungerleider ◽  
Meghan Muse ◽  
Martin M. Matzuk ◽  
...  

Based on the phenotype of the activin-like kinase-7 (ALK7)-null mouse, activins A and B have been proposed to play distinct roles in regulating pancreatic islet function and glucose homeostasis, with activin A acting to enhance islet function and insulin release while activin B antagonizes these actions. We therefore hypothesized that islets from activin B-null (BBKO) mice would have enhanced glucose-stimulated insulin secretion. In addition, we hypothesized that this enhanced islet function would translate into increased whole body glucose tolerance. We tested these hypotheses by analyzing glucose homeostasis, insulin secretion, and islet function in BBKO mice. No differences were observed in fasting glucose or insulin levels, glucose tolerance, or insulin sensitivity compared with weight-matched young or older males. Similarly, there were no significant differences in insulin secretion comparing islets from WT or BBKO males at either age. However, BBKO islets were more sensitive to activin A, myostatin (MSTN), and follistatin (FST) treatments, so that activin A and FST inhibited and MSTN enhanced glucose stimulated insulin secretion. While mean islet area and the distribution of islet areas were not different between the genotypes, islet mass, islet number, and the proportion of α-cells/islet were significantly reduced in BBKO islets. These results indicate that activin B does not antagonize activin A to influence whole body glucose homeostasis or β-cell function but does influence islet mass and proportion of α-cells/islet. Therefore, loss of activin B signaling alone does not account for the ALK7-null phenotype, but activin B may have important roles in modulating islet mass, islet number, and the cellular composition of islets.


2018 ◽  
Vol 314 (1) ◽  
pp. E53-E65 ◽  
Author(s):  
Ivan Torre-Villalvazo ◽  
Luz Graciela Cervantes-Pérez ◽  
Lilia G. Noriega ◽  
Jose V. Jiménez ◽  
Norma Uribe ◽  
...  

The STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) controls the activity of the electroneutral cation-chloride cotransporters (SLC12 family) and thus physiological processes such as modulation of cell volume, intracellular chloride concentration [Cl−]i, and transepithelial salt transport. Modulation of SPAK kinase activity may have an impact on hypertension and obesity, as STK39, the gene encoding SPAK, has been suggested as a hypertension and obesity susceptibility gene. In fact, the absence of SPAK activity in mice in which the activating threonine in the T loop was substituted by alanine (SPAK-KI mice) is associated with decreased blood pressure; however its consequences in metabolism have not been explored. Here, we fed wild-type and homozygous SPAK-KI mice a high-fat diet for 17 wk to evaluate weight gain, circulating substrates and hormones, energy expenditure, glucose tolerance, and insulin sensitivity. SPAK-KI mice exhibit resistance to HFD-induced obesity and hepatic steatosis associated with increased energy expenditure, higher thermogenic activity in brown adipose tissue, increased mitochondrial activity in skeletal muscle, and reduced white adipose tissue hypertrophy mediated by augmented whole body insulin sensitivity and glucose tolerance. Our data reveal a previously unrecognized role for the SPAK kinase in the regulation of energy balance, thermogenesis, and insulin sensitivity, suggesting that this kinase could be a new drug target for the treatment of obesity and the metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document