scholarly journals Brown fat thermogenesis in cold-acclimated rats is not abolished by the suppression of thyroid function

2002 ◽  
Vol 283 (3) ◽  
pp. E496-E502 ◽  
Author(s):  
Angel A. Zaninovich ◽  
Marcela Raíces ◽  
Inés Rebagliati ◽  
Conrado Ricci ◽  
Karl Hagmüller

The effects of long-term cold exposure on brown adipose tissue (BAT) thermogenesis in hypothyroid rats have been examined. Thyroid ablation was performed in normal rats after 2 mo of exposure to 4°C, when BAT hypertrophy and thermogenic activity were maximal. After ablation, hypothyroid and normal controls remained in the cold for 2 additional months. At the end of the 4-mo cold exposure, all untreated hypothyroid rats were alive, had normal body temperature, and had gained an average 12.8% more weight than normal controls. Long-term cold exposure of hypothyroid rats markedly increased BAT weight, mitochondrial proteins, uncoupling protein (UCP)-1, mRNA for UCP-1, and oxygen consumption to levels similar to those seen in cold-exposed normal rats. The results indicate that thyroid hormones are required for increased thermogenic capacity to occur as an adaptation to long-term cold exposure. However, cold adaptation can be maintained in the absence of thyroid hormone.

1996 ◽  
Vol 316 (2) ◽  
pp. 607-613 ◽  
Author(s):  
Martin KLINGENSPOR ◽  
Marc IVEMEYER ◽  
Herbert WIESINGER ◽  
Kirsten HAAS ◽  
Gerhard HELDMAIER ◽  
...  

After cold exposure, cytochrome c oxidase (COX) activity increased about 2.5-fold within 2 weeks in the brown adipose tissue (BAT) of Djungarian hamsters. The mRNAs for COX subunits I and III and the 12 S rRNA, encoded on mitochondrial DNA (mtDNA), as well as mRNAs for COX subunits IV, Va and mitochondrial transcription factor A, encoded in the nucleus, were unchanged when expressed per unit of total tissue RNA. However, since total tissue RNA doubled per BAT depot, while total DNA remained unchanged, the actual levels of these transcripts were increased within BAT cells. In contrast, the abundance of mRNA for uncoupling protein was increased 10-fold, indicating specific activation of this gene. In addition, the maximal rate of protein synthesis analysed in a faithful in organello system was increased 2.5-fold in mitochondria isolated from BAT after 7 days of cold exposure. We conclude from these data that the biogenesis of thermogenic mitochondria in BAT following cold adaptation is achieved by increasing the overall capacity for synthesis of mitochondrial proteins in both compartments, by increasing their mRNAs as well as the ribosomes needed for their translation. In addition, the translational rate for COX subunits as well as all other proteins encoded on mtDNA is increased. Thus the pool of subunits encoded on mtDNA required for assembly of respiratory chain complexes is provided. By comparison with other models of increased mitochondrial biogenesis, we propose that thyroid hormone (generated within BAT cells by 5´-deiodinase, and induced upon sympathetic stimulation), which is a well known regulator of the biogenesis of mitochondria in many tissues, is also the major effector of these adaptive changes in BAT.


1995 ◽  
Vol 269 (1) ◽  
pp. R38-R47 ◽  
Author(s):  
J. M. Matz ◽  
M. J. Blake ◽  
H. M. Tatelman ◽  
K. P. Lavoi ◽  
N. J. Holbrook

The accumulation of heat shock proteins (HSPs) after the exposure of cells or organisms to elevated temperatures is well established. It is also known that a variety of other environmental and cellular metabolic stressors can induce HSP synthesis. However, few studies have investigated the effect of cold temperature on HSP expression. Here we report that exposure of Institute of Cancer Research (ICR) mice to cold ambient temperatures results in a tissue-selective induction of HSPs in brown adipose tissue (BAT) coincident with the induction of mitochondrial uncoupling protein synthesis. Cold-induced HSP expression is associated with enhanced binding of heat shock transcription factors to DNA, similar to that which occurs after exposure of cells or tissues to heat and other metabolic stresses. Adrenergic receptor antagonists were found to block cold-induced HSP70 expression in BAT, whereas adrenergic agonists induced BAT HSP expression in the absence of cold exposure. These findings suggest that norepinephrine, released in response to cold exposure, induces HSP expression in BAT. Norepinephrine appears to initiate transcription of HSP genes after binding to BAT adrenergic receptors through, as yet, undetermined signal transduction pathways. Thermogenesis results from an increase in activity and synthesis of several metabolic enzymes in BAT of animals exposed to cold challenge. The concomitant increase in HSPs may function to facilitate the translocation and activity of the enzymes involved in this process.


2020 ◽  
Vol 41 (07) ◽  
pp. 427-442
Author(s):  
Alexandra R. Martin ◽  
Soonkyu Chung ◽  
Karsten Koehler

AbstractExercise is commonly utilized for weight loss, yet research has focused less on specific modifications to adipose tissue metabolism. White adipose tissue (WAT) is the storage form of fat, whereas brown adipose tissue (BAT) is a thermogenic tissue whose uncoupling increases energy expenditure. The most established BAT activator is cold exposure, which also transforms WAT into “beige cells” that express uncoupling protein 1 (UCP1). Preliminary evidence in rodents suggests exercise elicits similar effects. The purpose of this review is to parallel and examine differences between exercise and cold exposure on BAT activation and beige induction. Like cold exposure, exercise stimulates the sympathetic nervous system and activates molecular pathways responsible for BAT/beige activation, including upregulation of BAT activation markers (UCP1, proliferator-activated receptor-gamma coactivator-1α) and stimulation of endocrine activators (fibroblast growth factor-21, irisin, and natriuretic peptides). Further, certain BAT activators are altered exclusively by exercise (interleukin-6, lactate). Markers of BAT activation increase from both cold exposure and exercise, whereas effects in WAT are compartment-specific. Stimulation of endocrine activators depends on numerous factors, including stimulus intensity and duration. Evidence of these analogous, albeit not mirrored, mechanisms is demonstrated by increases in adipose activity in rodents, while effects remain challenging to quantify in humans.


2000 ◽  
Vol 279 (4) ◽  
pp. R1305-R1309 ◽  
Author(s):  
Takayuki Masaki ◽  
Hironobu Yoshimatsu ◽  
Seiichi Chiba ◽  
Toshiie Sakata

Impaired activity of the uncoupling protein (UCP) family has been proposed to promote obesity development. The present study examined differences in UCP responses to cold exposure between leptin-resistance obese ( db/db) mice and their lean (C57Ksj) littermates. Basal UCP1 and UCP3 mRNA expression in brown adipose tissue was lower in obese mice compared with lean mice, but UCP2 expression in white adipose tissue (WAT) was higher. Basal skeletal muscle UCP3 did not change remarkably. The UCP family mRNAs, which were upregulated 12 and 24 h after cold exposure (4°C), were returned to prior levels 12 h after rewarming exposure (21°C) in lean mice. The accelerating effects of cold exposure on the UCP family were impaired in db/db obese mice. Together with these changes, WAT lipoprotein lipase mRNA was downregulated, and the concentration of serum free fatty acid was increased in response to cold exposure in the lean mice but not in db/db obese littermates. The impaired function of the UCP family and diminished lipolysis in response to cold exposure indicate that the reduced lipolytic activity may contribute to the inactivation of the UCP family in db/db obese mice.


2014 ◽  
Vol 222 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Abdoulaye Diané ◽  
Nikolina Nikolic ◽  
Alexander P Rudecki ◽  
Shannon M King ◽  
Drew J Bowie ◽  
...  

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widely distributed neuropeptide that acts as a neurotransmitter, neuromodulator, neurotropic factor, neuroprotectant, secretagogue,and neurohormone. Owing to its pleiotropic biological actions, knockout ofPacap(Adcyap1) has been shown to induce several abnormalities in mice such as impaired thermoregulation. However, the underlying physiological and molecular mechanisms remain unclear. A previous report has shown that cold-exposedPacapnull mice cannot supply appropriate levels of norepinephrine (NE) to brown adipocytes. Therefore, we hypothesized that exogenous NE would rescue the impaired thermogenic response ofPacapnull mice during cold exposure. We compared the adaptive thermogenic capacity ofPacap−/−toPacap+/+mice in response to NE when housed at room temperature (24 °C) and after a 3.5-week cold exposure (4 °C). Biochemical parameters, expression of thermogenic genes, and morphological properties of brown adipose tissue (BAT) and white adipose tissue (WAT) were also characterized. Results showed that there was a significant effect of temperature, but no effect of genotype, on the resting metabolic rate in conscious, unrestrained mice. However, the normal cold-induced increase in the basal metabolic rate and NE-induced increase in thermogenesis were severely blunted in cold-exposedPacap−/−mice. These changes were associated with altered substrate utilization, reduced β3-adrenergic receptor (β3-Ar(Adrb3)) and hormone-sensitive lipase (Hsl(Lipe)) gene expression, and increased fibroblast growth factor 2 (Fgf2) gene expression in BAT. Interestingly,Pacap−/−mice had depleted WAT depots, associated with upregulated uncoupling protein 1 expression in inguinal WATs. These results suggest that the impairment of adaptive thermogenesis inPacapnull mice cannot be rescued by exogenous NE perhaps in part due to decreased β3-Ar-mediated BAT activation.


2020 ◽  
Author(s):  
Bruno Halpern ◽  
Marcio C Mancini ◽  
Caroline Mendes ◽  
Camila Maria Longo Machado ◽  
Silvana Prando ◽  
...  

Abstract Objective: Melatonin has been shown to increase brown adipose tissue (BAT) mass, which can lead to important metabolic effects, such as bodyweight reduction and glycemic improvement. However, BAT mass can only be measured invasively and. the gold standard for non-invasive measurement of BAT activity is positron emission tomography with 2-deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG PET). There is no study, to our knowledge, that has evaluated if melatonin influences BAT activity, measured by this imaging technique in animals. Methods: Three experimental groups of Wistar rats (control, pinealectomy, and pinealectomy replaced with melatonin) had an 18F-FDG PET performed at room temperature and after acute cold exposure. The ratio of increased BAT activity after cold exposure/room temperature was called “acute thermogenic capacity” (ATC) We also measured UCP-1 mRNA expression to correlate with the 18F-FDG PET results. Results: Pinealectomy led to reduced acute thermogenic capacity, compared with the other groups, as well as reduced UCP1 mRNA expression.Conclusion: Melatonin deficiency impairs BAT response when exposed to acute cold exposure. These results can lead to future studies of the influence of melatonin on BAT, in animals and humans, without needing an invasive evaluation of BAT.


2020 ◽  
Vol 245 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Chunchun Wei ◽  
Xianhua Ma ◽  
Kai Su ◽  
Shasha Qi ◽  
Yuangang Zhu ◽  
...  

Brown adipose tissue (BAT) plays a critical role in energy expenditure by uncoupling protein 1 (UCP1)-mediated thermogenesis. Carbohydrate response element-binding protein (ChREBP) is one of the key transcription factors regulating de novo lipogenesis (DNL). As a constitutively active form, ChREBP-β is expressed at extremely low levels. Up to date, its functional relevance in BAT remains unclear. In this study, we show that ChREBP-β inhibits BAT thermogenesis. BAT ChREBP-β mRNA levels were elevated upon cold exposure, which prompted us to generate a mouse model overexpressing ChREBP-β specifically in BAT using the Cre/LoxP approach. ChREBP-β overexpression led to a whitening phenotype of BAT at room temperature, as evidenced by increased lipid droplet size and decreased mitochondrion content. Moreover, BAT thermogenesis was inhibited upon acute cold exposure, and its metabolic remodeling induced by long-term cold adaptation was significantly impaired by ChREBP-β overexpression. Mechanistically, ChREBP-β overexpression downregulated expression of genes involved in mitochondrial biogenesis, autophagy, and respiration. Furthermore, thermogenic gene expression (e.g. Dio2, UCP1) was markedly inhibited in BAT by the overexpressed ChREBP-β. Put together, our work points to ChREBP-β as a negative regulator of thermogenesis in brown adipocytes.


2020 ◽  
Vol 295 (7) ◽  
pp. 2034-2042 ◽  
Author(s):  
Raj Kamal Srivastava ◽  
Annalena Moliner ◽  
Ee-Soo Lee ◽  
Emily Nickles ◽  
Eunice Sim ◽  
...  

Prolonged cold exposure stimulates the formation of brownlike adipocytes expressing UCP1 (uncoupling-protein-1) in subcutaneous white adipose tissue which, together with classical brown adipose tissue, contributes to maintaining body temperature in mammals through nonshivering thermogenesis. The mechanisms that regulate the formation of these cells, alternatively called beige or brite adipocytes, are incompletely understood. Here we report that mice lacking CD137, a cell surface protein used in several studies as a marker for beige adipocytes, showed elevated levels of thermogenic markers, including UCP1, increased numbers of beige adipocyte precursors, and expanded UCP1-expressing cell clusters in inguinal white adipose tissue after chronic cold exposure. CD137 knockout mice also showed enhanced cold resistance. These results indicate that CD137 functions as a negative regulator of “browning” in white adipose tissue and call into question the use of this protein as a functional marker for beige adipocytes.


Sign in / Sign up

Export Citation Format

Share Document