Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss

2012 ◽  
Vol 302 (11) ◽  
pp. E1440-E1449 ◽  
Author(s):  
Rethi Raghu Nadhanan ◽  
Suzanne M. Abimosleh ◽  
Yu-Wen Su ◽  
Michaela A. Scherer ◽  
Gordon S. Howarth ◽  
...  

Cancer chemotherapy can cause osteopenia or osteoporosis, and yet the underlying mechanisms remain unclear, and currently, no preventative treatments are available. This study investigated damaging effects of 5-fluorouracil (5-FU) on histological, cellular, and molecular changes in the tibial metaphysis and potential protective benefits of emu oil (EO), which is known to possess a potent anti-inflammatory property. Female dark agouti rats were gavaged orally with EO or water (1 ml·day−1·rat−1) for 1 wk before a single ip injection of 5-FU (150 mg/kg) or saline (Sal) was given. The treatment groups were H2O + Sal, H2O + 5-FU, EO + 5-FU, and EO + Sal. Oral gavage was given throughout the whole period up to 1 day before euthanasia ( days 3, 4, and 5 post-5-FU). Histological analysis showed that H2O + 5-FU significantly reduced heights of primary spongiosa on days 3 and 5 and trabecular bone volume of secondary spongiosa on days 3 and 4. It reduced density of osteoblasts slightly and caused an increase in the density of osteoclasts on trabecular bone surface on day 4. EO supplementation prevented reduction of osteoblasts and induction of osteoclasts and bone loss caused by 5-FU. Gene expression studies confirmed an inhibitory effect of EO on osteoclasts since it suppressed 5-FU-induced expression of proinflammatory and osteoclastogenic cytokine TNFα, osteoclast marker receptor activator of nuclear factor-κB, and osteoclast-associated receptor. Therefore, this study demonstrated that EO can counter 5-FU chemotherapy-induced inflammation in bone, preserve osteoblasts, suppress osteoclast formation, and potentially be useful in preventing 5-FU chemotherapy-induced bone loss.

2021 ◽  
Vol 22 (9) ◽  
pp. 4411
Author(s):  
Hong Yu

As G protein coupled receptors, sphingosine-1-phosphate receptors (S1PRs) have recently gained attention for their role in modulating inflammatory bone loss diseases. Notably, in murine studies inhibiting S1PR2 by its specific inhibitor, JTE013, alleviated osteoporosis induced by RANKL and attenuated periodontal alveolar bone loss induced by oral bacterial inflammation. Treatment with a multiple S1PRs modulator, FTY720, also suppressed ovariectomy-induced osteoporosis, collagen or adjuvant-induced arthritis, and apical periodontitis in mice. However, most previous studies and reviews have focused mainly on how S1PRs manipulate S1P signaling pathways, subsequently affecting various diseases. In this review, we summarize the underlying mechanisms associated with JTE013 and FTY720 in modulating inflammatory cytokine release, cell chemotaxis, and osteoclastogenesis, subsequently influencing inflammatory bone loss diseases. Studies from our group and from other labs indicate that S1PRs not only control S1P signaling, they also regulate signaling pathways induced by other stimuli, including bacteria, lipopolysaccharide (LPS), bile acid, receptor activator of nuclear factor κB ligand (RANKL), IL-6, and vitamin D. JTE013 and FTY720 alleviate inflammatory bone loss by decreasing the production of inflammatory cytokines and chemokines, reducing chemotaxis of inflammatory cells from blood circulation to bone and soft tissues, and suppressing RANKL-induced osteoclast formation.


2019 ◽  
Vol 6 (6) ◽  
pp. 190360 ◽  
Author(s):  
Liuliu Yan ◽  
Lulu Lu ◽  
Fangbin Hu ◽  
Dattatrya Shetti ◽  
Kun Wei

Osteoclasts are multinuclear giant cells that have unique ability to degrade bone. The search for new medicines that modulate the formation and function of osteoclasts is a potential approach for treating osteoclast-related bone diseases. Piceatannol (PIC) is a natural organic polyphenolic stilbene compound found in diverse plants with a strong antioxidant and anti-inflammatory effect. However, the effect of PIC on bone health has not been scrutinized systematically. In this study, we used RAW264.7, an osteoclast lineage of cells of murine macrophages, to investigate the effects and the underlying mechanisms of PIC on osteoclasts. Here, we demonstrated that PIC treatment ranging from 0 to 40 µM strongly inhibited osteoclast formation and bone resorption in a dose-dependent manner. Furthermore, the inhibitory effect of PIC was accompanied by the decrease of osteoclast-specific genes. At the molecular level, PIC suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK1/2), NF-κB p65, IκBα and AKT. Besides, PIC promoted the apoptosis of mature osteoclasts by inducing caspase-3 expression. In conclusion, our results suggested that PIC inhibited RANKL-induced osteoclastogenesis and bone resorption by suppressing MAPK, NF-κB and AKT signalling pathways and promoted caspase3-mediated apoptosis of mature osteoclasts, which might contribute to the treatment of bone diseases characterized by excessive bone resorption.


2005 ◽  
Vol 201 (10) ◽  
pp. 1677-1687 ◽  
Author(s):  
Maria Grazia Ruocco ◽  
Shin Maeda ◽  
Jin Mo Park ◽  
Toby Lawrence ◽  
Li-Chung Hsu ◽  
...  

Transcription factor, nuclear factor κB (NF-κB), is required for osteoclast formation in vivo and mice lacking both of the NF-κB p50 and p52 proteins are osteopetrotic. Here we address the relative roles of the two catalytic subunits of the IκB kinase (IKK) complex that mediate NF-κB activation, IKKα and IKKβ, in osteoclast formation and inflammation-induced bone loss. Our findings point out the importance of the IKKβ subunit as a transducer of signals from receptor activator of NF-κB (RANK) to NF-κB. Although IKKα is required for RANK ligand-induced osteoclast formation in vitro, it is not needed in vivo. However, IKKβ is required for osteoclastogenesis in vitro and in vivo. IKKβ also protects osteoclasts and their progenitors from tumor necrosis factor α–induced apoptosis, and its loss in hematopoietic cells prevents inflammation-induced bone loss.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1392 ◽  
Author(s):  
Hye Jung Ihn ◽  
Ju Ang Kim ◽  
Soomin Lim ◽  
Sang-Hyeon Nam ◽  
So Hyeon Hwang ◽  
...  

There is growing interest in bioactive substances from marine organisms for their potential use against diverse human diseases. Osteoporosis is a skeletal disorder associated with bone loss primarily occurring through enhanced osteoclast differentiation and resorption. Recently, we reported the anti-osteoclastogenic activity of fermented Pacific oyster (Crassostrea gigas) extract (FO) in vitro. The present study focused on investigating the anti-osteoporotic efficacy of FO in bone loss prevention in an experimental animal model of osteoporosis and elucidating the mechanism underlying its effects. Oral administration of FO significantly decreased ovariectomy-induced osteoclast formation and prevented bone loss, with reduced serum levels of bone turnover biomarkers including osteocalcin and C-terminal telopeptide fragment of type I collagen C-terminus (CTX). FO significantly suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced differentiation of bone marrow-derived macrophages (BMMs) into osteoclasts and attenuated the induction of osteoclast-specific genes required for osteoclastogenesis and bone resorption. Furthermore, FO inhibited RANKL-mediated IκBα and p65 phosphorylation in BMMs. Taken together, these results demonstrate that FO effectively suppresses osteoclastogenesis in vivo and in vitro, and that FO can be considered as a potential therapeutic option for the treatment of osteoporosis and osteoclast-mediated skeletal diseases.


2016 ◽  
Vol 310 (10) ◽  
pp. E811-E820 ◽  
Author(s):  
Ariana Dela Cruz ◽  
Marc D. Grynpas ◽  
Jane Mitchell

Osteoblastic cells indirectly induce osteoclastogenesis in the bone microenvironment by expressing paracrine factors such as RANKL and M-CSF, leading to increased bone resorption. These cytokines can be regulated by a variety of intracellular pathways, which include G protein-coupled receptor signaling. To explore how enhanced signaling of the Gαq/11 pathway in osteoblast lineage cells may mediate osteoclast formation, we cocultured wild-type (WT) preosteoclasts with BMSCs derived from either WT or transgenic mice with osteoblast-specific overexpression of Gα11 (G11-Tg). G11-Tg cocultures had elevated osteoclast numbers with greater resorptive capacity and increased expression of Rankl, Rankl:Opg (osteoprotegerin), and M-csf compared with cocultures with WT BMSCs. As well, cocultures with G11-Tg BMSCs required a higher concentration of OPG to inhibit osteoclast formation and less angiotensin II to increase osteoclast size. These indicate that G11-Tg osteoblasts drive the increased osteoclast formation and osteopenia seen in G11-Tg mice. Pamidronate treatment of G11-Tg mice restored the trabecular bone loss phenotype, as bone mineral density, bone volume, trabecular number, separation, and expressions of osteoblastic and osteoclastic genes were comparable with WT parameters. These changes were characterized by enhanced accumulation of calcified cartilage in trabecular bone, demonstrating that resorption of the cartilaginous intermediate by osteoclasts is more affected by bisphosphonate treatment in G11-Tg mice. In conclusion, overexpression of Gα11 in osteoblastic cells promotes osteoclastogenesis by upregulation of Rankl and M-csf and bone loss by increased osteoclast resorption of the trabecular bone and cartilaginous matrix.


Blood ◽  
2002 ◽  
Vol 100 (7) ◽  
pp. 2530-2536 ◽  
Author(s):  
Kimberly J. Walton ◽  
Joanne M. Duncan ◽  
Paula Deschamps ◽  
Stephen G. Shaughnessy

We have previously demonstrated that long-term heparin treatment causes cancellous bone loss in rats due in part to an increase in the number of osteoclasts lining the trabecular bone surface. In the present study, we investigated this phenomenon by examining the ability of heparin to synergistically enhance interleukin-11 (IL-11)–induced osteoclast formation. Treatment of murine calvaria and bone marrow cells with IL-11 was found to induce the formation of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells (MNCs) in a dose-dependent fashion. No effect was seen when cocultures were treated with heparin alone. However, when cocultures were treated with both IL-11 and heparin, IL-11's ability to induce TRAP+ MNC formation was enhanced 6-fold. In an attempt to resolve the mechanism responsible for this effect, we examined the ability of heparin to influence IL-11 signaling using murine calvaria cells. Heparin was found to enhance both IL-11–induced STAT3-DNA complex formation and transactivation without altering either STAT3 (signal transducer and activator of transcription-3) tyrosine or serine phosphorylation. Heparin was also found to enhance IL-11's ability to induce the expression of both receptor activator of nuclear factor–κB ligand (RANKL) and glycoprotein (gp) 130. When taken together, these findings suggest a plausible mechanism by which heparin may cause increased osteoclastogenesis and therefore bone loss when administered long-term.


2015 ◽  
Vol 37 (2) ◽  
pp. 592-602 ◽  
Author(s):  
Jianshu Huang ◽  
Mingdong Zhao ◽  
Xiuju Li ◽  
Li Ma ◽  
Jihong Zhang ◽  
...  

Background/Aims: Benzene is a toxic chemical whose leukemogenic effects have been studied for decades. The mechanisms of benzene-induced toxicity and leukemogenicity are not fully understood, although the involvement of several pathways has been suggested, including oxidative stress, DNA damage, cell cycle regulation and programmed cell death. In the present study, we investigated the effect of hydroquinone (HQ), a major benzene metabolite, on the viability of bone marrow derived mesenchymal stem cells (BMSCs) and explored the underlying mechanisms. Methods: First, we study the the effect of HQ on BMSCs cell viability, apoptosis and the expressions of MDR1 and NF-κB. Then we investigate the MDR1 on cell viability and cell apoptosis for BMSCs under HQ treatment. Finally, we studied the impact of nuclear factor κB (NF-κB) on the expression of MDR1. Results: Our results showed that HQ decreased cell viability and promoted cell apoptosis of BMSCs, as determined by the MTT assay and flow cytometry. Western blotting and quantitative PCR showed that HQ downregulated the expression of the MDR1 gene by inhibiting the activation and nuclear translocation of the transcription factor NF-κB. Overexpression of MDR1 attenuated the inhibitory effect of HQ on cell viability in BMSC. Conclusion: The results of the present study suggest the involvement of the multidrug resistance membrane transporter MDR1 and the NF-κB pathway in the cytotoxicity of benzene and its metabolites. Further studies are necessary to clarify the role of the pathways involved and the crosstalk between them in mediating the effects of HQ in bone marrow progenitor cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Seon-A Jang ◽  
Youn-Hwan Hwang ◽  
Hyun Yang ◽  
Jin Ah Ryuk ◽  
Taesoo Kim ◽  
...  

Mentha arvensis L., is an aromatic herb that belongs to the Lamiaceae family and is widely used in medicinal applications, essential oil applications, and food flavoring. The extract of M. arvensis has been reported to exert sedative-hypnotic, anti-inflammatory, anti-fungal, and anti-bacterial effects. However, its effects on bone metabolism have not yet been studied. Here, we investigated the effects of the water extract of M. arvensis (WEMA) on osteoclast formation in vitro and bone loss in an ovariectomized mouse model. We found that WEMA inhibited osteoclast differentiation by directly acting on osteoclast precursor cells. WEMA inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced the expression of cellular oncogene fos (c-Fos) and nuclear factor of activated T cells c1 (NFATc1), crucial transcription factors for osteoclast differentiation, by suppressing RANKL-induced activation of early signaling pathways such as those of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB). In addition, oral administration of WEMA suppressed ovariectomy-induced trabecular bone loss in mice. We additionally identified phytochemicals in WEMA that are known to have anti-osteoclastogenic or anti-osteoporotic properties. Collectively, these results suggest that WEMA is a promising herbal candidate that can be used to prevent or treat postmenopausal osteoporosis.


Endocrinology ◽  
2015 ◽  
Vol 156 (12) ◽  
pp. 4377-4387 ◽  
Author(s):  
Cyril Thouverey ◽  
Joseph Caverzasio

Estrogen deficiency causes bone loss by increasing the number of bone-resorbing osteoclasts. Selective p38α MAPK inhibitors prevent bone-wasting effects of estrogen withdrawal but implicated mechanisms remain to be identified. Here, we show that inactivation of the p38α-encoding gene in osteoblast lineage cells with the use of an osteocalcin-cre transgene protects mice from ovariectomy-induced bone loss (a murine model of postmenopausal osteoporosis). Ovariectomy fails to induce bone loss, increase bone resorption, and stimulate receptor activator of nuclear factor κB ligand and IL-6 expression in mice lacking p38α in osteoblasts and osteocytes. Finally, TNFα or IL-1, which are osteoclastogenic cytokines overproduced in the bone marrow under estrogen deficiency, can activate p38α signaling in osteoblasts, but those cytokines cannot enhance Rankl and Il6 expressions or increase osteoclast formation in p38a-deficient osteoblast cultures. These findings demonstrate that p38α MAPK signaling in osteoblast lineage cells mediates ovariectomy-induced bone loss by up-regulating receptor activator of nuclear factor κB ligand and IL-6 production.


Sign in / Sign up

Export Citation Format

Share Document