Disuse osteopenia is accompanied by downregulation of gene expression for bone proteins in growing rats

1992 ◽  
Vol 263 (6) ◽  
pp. E1029-E1034 ◽  
Author(s):  
G. K. Wakley ◽  
J. S. Portwood ◽  
R. T. Turner

Unilateral sciatic neurectomy (USN) resulted in cortical osteopenia in tibiae from the sciatic nerve-sectioned limb of growing rats. The bone deficit resulted from decreased periosteal addition; there were no changes in the indexes of bone resorption. The periosteal bone formation rate was reduced in the nerve-sectioned limb within 7 days of sciatic neurectomy, and this decrease persisted for at least 56 days. Steady-state mRNA levels for bone proteins were determined in periosteum isolated from tibiae and femurs 7 and 14 days after sciatic nerve section. Nerve section resulted in decreased levels of mRNA for osteocalcin, alkaline phosphatase, and possibly the prepro-alpha (I)-subunit of type I collagen (collagen). The effects were more pronounced in tibiae than femurs, corresponding to the greater degree of immobility induced by USN in the former bone. The results demonstrate that decreased bone formation precedes establishment of disuse cortical osteopenia in growing rats with no evidence for a change in bone resorption. Furthermore, the decreased bone formation is associated with, and may be due to, reduced mRNA levels for matrix proteins and other important bone proteins.

2006 ◽  
Vol 263 (6) ◽  
pp. E1029-E1034
Author(s):  
G. K. Wakley ◽  
J. S. Portwood ◽  
R. T. Turner

Unilateral sciatic neurectomy (USN) resulted in cortical osteopenia in tibiae from the sciatic nerve-sectioned limb of growing rats. The bone deficit resulted from decreased periosteal addition; there were no changes in the indexes of bone resorption. The periosteal bone formation rate was reduced in the nerve-sectioned limb within 7 days of sciatic neurectomy, and this decrease persisted for at least 56 days. Steady-state mRNA levels for bone proteins were determined in periosteum isolated from tibiae and femurs 7 and 14 days after sciatic nerve section. Nerve section resulted in decreased levels of mRNA for osteocalcin, alkaline phosphatase, and possibly the prepro-alpha (I)-subunit of type I collagen (collagen). The effects were more pronounced in tibiae than femurs, corresponding to the greater degree of immobility induced by USN in the former bone. The results demonstrate that decreased bone formation precedes establishment of disuse cortical osteopenia in growing rats with no evidence for a change in bone resorption. Furthermore, the decreased bone formation is associated with, and may be due to, reduced mRNA levels for matrix proteins and other important bone proteins.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Supitra Namhong ◽  
Kannikar Wongdee ◽  
Panan Suntornsaratoon ◽  
Jarinthorn Teerapornpuntakit ◽  
Ruedee Hemstapat ◽  
...  

Abstract Osteoarthritis (OA) leads to joint pain from intraarticular inflammation with articular cartilage erosion, deterioration of joint function and abnormal subchondral bone structure. Besides aging, chronic repetitive joint injury is a common risk factor in young individuals. Nevertheless, whether OA is associated with bone loss at other skeletal sites is unclear. Since OA-associated proinflammatory cytokines—some of which are osteoclastogenic factors—are often detected in the circulation, we hypothesized that the injury-induced knee OA could result in widespread osteopenia at bone sites distant to the injured knee. Here we performed anterior cruciate ligament transection (ACLT) to induce knee OA in one limb of female Sprague–Dawley rats and determined bone changes post-OA induction by micro-computed tomography and computer-assisted bone histomorphometry. We found that although OA modestly altered bone density, histomorphometric analyses revealed increases in bone resorption and osteoid production with impaired mineralization. The bone formation rate was also reduced in OA rats. In conclusions, ACLT in young growing rats induced microstructural defects in the trabecular portion of weight-bearing (tibia) and non-weight-bearing bones (L5 vertebra), in part by enhancing bone resorption and suppressing bone formation. This finding supports the increasing concern regarding the repetitive sport-related ACL injuries and the consequent bone loss.


Blood ◽  
1993 ◽  
Vol 82 (8) ◽  
pp. 2361-2370 ◽  
Author(s):  
P Van Vlasselaer ◽  
B Borremans ◽  
R Van Den Heuvel ◽  
U Van Gorp ◽  
R de Waal Malefyt

Abstract Murine bone marrow cells synthesize bone proteins, including alkaline phosphatase (ALP), collagen type I, and osteocalcin, and form a mineralized extracellular matrix when cultured in the presence of beta- glycerophosphate and vitamin C. Interleukin-10 (IL-10) suppressed the synthesis of these bone proteins and mineralization without affecting cell proliferation. In addition, mRNA levels for the latter proteins were reduced in IL-10-treated cultures. This inhibitory effect was most outspoken when IL-10 was added before ALP activity peaked, eg, day 15 of culture. No significant effect was observed when IL-10 was added at later time points. This finding suggests that IL-10 acts at osteogenic differentiation stages that precede ALP expression but is ineffective on cells that progressed beyond this maturation stage. Likewise, IL-10 appeared to be unable to block both ALP activity and collagen synthesis in the preosteosteoblastic cell lines MN7 and MC3T3 that constitutively synthesize these proteins. Whereas IL-10 did not alter the number of fibroblast colony-forming cells of the marrow, it significantly reduced their osteogenic differentiation potential. In contrast to control cultures, IL-10-treated stroma was unable to either synthesize osteocalcin or to mineralize when subcultured over a 25-day period in the absence of IL-10. The inhibitory activity of IL-10 coincided with significant changes in stroma morphology. Whereas control cultures contained mainly flat adherent polygonal cells, significant numbers of rounded semiadherent to nonadherent cells were observed in the presence of IL-10. Scanning and transmission electron microscopy showed that, in contrast to control cultures, IL-10-treated stromas completely lacked a mineralized extracellular matrix. Collectively, these data suggest that IL-10 may have important regulatory effects on bone biology because of its capacity to downregulate early steps of osteogenic differentiation.


1986 ◽  
Vol 251 (4) ◽  
pp. E400-E406 ◽  
Author(s):  
P. J. Marie ◽  
L. Cancela ◽  
N. Le Boulch ◽  
L. Miravet

The effects of pregnancy and lactation on endosteal bone formation and resorption were evaluated in vitamin D-depleted (-D) and vitamin D-repleted (+D) rats. Pregnancy induced a marked stimulation of osteoclastic bone resorption and of static and dynamic parameters of bone formation and mineralization. Bone resorption increased independently of vitamin D status and did not correlate with plasma 1,25-dihydroxyvitamin D3 [1,25(OH)2D] levels, but it was associated with increased plasma immunoreactive parathyroid hormone (iPTH) concentrations. Stimulation of the endosteal bone formation rate was mainly impaired in D-depleted rats, resulting in trabecular bone loss, which, in -D mother rats, was associated with decreased bone ash and total bone calcium. Lactation further stimulated bone resorption and reduced the trabecular bone volume; ash weight and bone calcium content were also decreased independently of the vitamin D status and changes in plasma iPTH levels. In presence of vitamin D, the bone formation rate increased fourfold during lactation but was unchanged in -D lactating rats. During lactation, vitamin D-depleted rats lost twofold more calcified bone than +D rats because of impaired mineralization. Thus, the present study shows that both the endosteal bone resorption and formation are stimulated by pregnancy and lactation and that vitamin D is required for normal bone mineralization during the reproductive period.


1999 ◽  
Vol 82 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Annette Creedon ◽  
Albert Flynn ◽  
Kevin Cashman

Forty 3-week-old male rats, Wistar strain, average weight 59 g, were randomized by weight into five groups of eight rats each. Three groups were fedad libitumon a semi-purified diet containing (per kg) 400 (adequate), 200 (moderately Mg-restricted) or 20 (severely Mg-restricted) mg Mg for 3 weeks while two groups were pair-fed with the Mg-adequate diet in the same quantities as those consumed by the two Mg-restricted groups respectively. While weight gains and food conversion efficiency values for the Mg-restricted groups were similar to those of the corresponding pair-fed control groups, serum and kidney Mg, and femoral dry weight were reduced by 70, 7 and 9 % respectively in the severely Mg-restricted group and were unaffected in the moderately Mg-restricted group. Significant reductions were observed in urinary pyridinoline (Pyr) (by 44 and 34 %) and deoxypyridinoline (Dpyr) levels (by 40 and 33 %) (markers of bone resorption), serum osteocalcin levels (by 46 and 28 %) (marker of bone formation), femoral Mg levels (by 52 and 14 %) and osteocalcin mRNA levels (by 46 and 22 %) compared with the corresponding pair-fed controls, in the severely and moderately Mg-restricted groups respectively, and these reductions, except for those in urinary Pyr and Dpyr, were more marked in the severely Mg-restricted group. Femoral Ca and P concentrations were unaffected by dietary Mg restriction. These results show that not only severe but also moderate dietary restriction of Mg over 21 d results in qualitative changes in bone (i.e. reduced Mg concentration) as well as in aberrant bone turnover in young growing rats (i.e. severely depressed rates of bone formation and bone resorption), which may impair bone development and bone strength.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 71-71
Author(s):  
Joseph Roberts ◽  
Moriah Bellissimo ◽  
Kaitlin Taibl ◽  
Karan Uppal ◽  
Dean Jones ◽  
...  

Abstract Objectives Optimal bone health is maintained through a remodeling cycle consisting of resorption followed by formation. Procollagen type I N-terminal propeptide (P1NP) and C-terminal telopeptides of type I collagen (CTX) are biomarkers of bone metabolism that capture changes in bone formation and bone resorption, respectively. This study aimed to identify unique metabolic pathways related to bone turnover markers (BTMs) in healthy young adults. Methods This cross-sectional study included 34 healthy, young adults (19 females, average age 27.8 years). Bone mineral density (BMD) was assessed by dual-energy x-ray absorptiometry. Fasting plasma was analyzed using dual column liquid chromatography and ultra-high-resolution mass spectrometry for metabolomics. Serum levels of P1NP and CTX were measured with ELISA. Linear regression and pathway enrichment analyses were used to identify metabolic pathways related to the BTMs. Results All participants had a normal whole-body BMD T-score. Metabolites significantly associated with P1NP (at P < 0.05) were significantly enriched in pathways linked to the TCA cycle, pyruvate metabolism, and metabolism of B-vitamins important for energy production (e.g., niacin, thiamin). Other nutrition-related metabolic pathways associated with P1NP were amino acid (proline, arginine, glutamate) and vitamin C metabolism, which are important for collagen formation. Metabolites were associated with CTX levels (at P < 0.05), which were enriched within lipid and fatty acid beta-oxidation metabolic pathways, as well as fat soluble micronutrients pathways including, vitamin D metabolism, vitamin E metabolism, and bile acid biosynthesis. Conclusions High-resolution metabolomics identified several distinct plasma metabolic pathways, including energy-yielding metabolic pathways and pathways related to fatty acid, amino acid, and micronutrient metabolism that were associated with markers of bone formation and bone resorption. Characterizing these metabolism-related pathways associated with BTMs in healthy adults is an important step towards understanding the metabolic perturbations that lead to low bone mass in older and clinical populations. Funding Sources National Institutes of Health and Emory University.


1977 ◽  
Vol 232 (6) ◽  
pp. E535
Author(s):  
B Haldimann ◽  
J P Bonjour ◽  
H Fleisch

The effect of calcium deprivation on the various calcium fluxes was studied in growing rats either sham-operated (SHAM), thyroparathyroidectomized (TPTX), or thyroparathyroidectomized and supplemented with parathyroid hormone (PTH) (TPTX + PTH). In SHAM rats a decrease in the net absorption of calcium (Vna) has no influence on calcemia or on bone formation (Vo+), but leads to an increase in bone resorption (Vo-). In TPTX rats a decrease in Vna induces a decrease in calcemia and in Vo+ but still causes an increase in Vo-. The same is true in TPTX + PTH rats although all the variables measured are increased. In TPTX rats, both without and with PTH, a linear correlation exists between calcemia and Vo+ suggesting that calcemia influences bone formation. Furthermore, it appears that PTH is important in regulating bone turnover, but that the adaptation of Vo- to a change in Vna can occur in the absence or in the presence of a constant amount of this hormone. The mechanism of regulating this adaptation of bone resorption is still unknown.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 506-506
Author(s):  
Evangelos Terpos ◽  
Deborah Heath ◽  
Amin Rahemtulla ◽  
Kostas Zervas ◽  
Andrew Chantry ◽  
...  

Abstract Bortezomib is a proteasome inhibitor, which is currently indicated for the treatment of relapsed/refractory myeloma (MM). Although the anti-myeloma effect of bortezomib has been clearly demonstrated, its effect on bone metabolism is still unclear. There are recent reports that bortezomib increases serum alkaline phosphatase (ALP) activity, which is consistent with enhanced osteoblast function. The aim of this study was to evaluate the effect of bortezomib on bone turnover in 34 patients with relapsed MM. Bortezomib was given alone at a dose of 1.3 mg/m2 on days 1, 4, 8, and 11 of a 3-week cycle for 4 cycles. Responders could continue for 4 more cycles, while non-responders could continue therapy with the addition of dexamethasone. The following serum indices were measured on day 1 of cycle 1, and then on day 21 of cycles 4 and 8: osteoblast inhibitor dickkopf-1 (DKK-1); osteoclast regulators: soluble RANKL (sRANKL) and osteoprotegerin (OPG); bone resorption markers: C-telopeptide of collagen type-I (CTX) and tartrate-resistant acid phosphatase type-5b (TRACP-5b); and bone formation markers: bone-specific ALP (bALP) and osteocalcin (OC). We also studied 33 healthy controls of similar gender and age. The objective response rate after 4 cycles of therapy was 66%: CR 8% and PR 58%. Sixteen responders and 3 non-responders continued on therapy for 4 more cycles. Myeloma patients at baseline had increased values of DKK-1 (p=0.007), sRANKL, sRANKL/OPG ratio, and both markers of bone resorption (p<0.0001) when compared to controls. In contrast, bone formation as assessed by serum bALP and OC was significantly reduced (p<0.001). There was a strong correlation between bone lytic disease and serum CTX (r=0.59, p<0.01), and sRANKL (r=0.4, p=0.03). Patients with severe bone disease (>9 lytic lesions, n=7) had elevated values of DKK-1 compared with all others (mean±SD: 223.4±264.4 ng/mL vs. 84±62.4 ng/mL; p=0.01). Moreover, serum levels of DKK-1 correlated with CTX levels (r=0.39, p=0.04), and weakly with bALP concentrations (r=−0.32, p=0.09). The administration of bortezomib produced a significant reduction of DKK-1 (p=0.035), sRANKL (p=0.01), CTX and TRACP-5b (p<0.001) after 4 cycles, which was still seen after 8 cycles of treatment (p<0.01). Bortezomib also produced a dramatic increase in both markers of bone formation, bALP and OC, after 4 and 8 cycles of therapy (p<0.01). Responders tended to have lower initial levels of DKK-1 compared with non-responders. Patients who achieved a CR or vgPR after 4 cycles of bortezomib had greater elevation of bALP than all others: mean±SD of increase: 306.3%±556.9% vs. 45.8%±56.5%; p=0.02. It is of interest that 3/4 non responders also had an increase in bALP (mean: 39.6%) after 4 cycles of bortezomib. There was no other correlation between response to therapy and alteration of bone markers. No healing of the lytic lesions was observed even in CR patients. This study suggests that bortezomib reduces serum levels of DKK-1 and RANKL, irrespective of response to therapy, in patients with relapsed myeloma and thus leads to normalization of abnormal bone remodeling through the increase of bone formation and reduction of bone resorption.


2010 ◽  
Vol 37 (6) ◽  
pp. 1252-1259 ◽  
Author(s):  
PATRICIA A. BERRY ◽  
ROSE A. MACIEWICZ ◽  
FLAVIA M. CICUTTINI ◽  
MARK D. JONES ◽  
CAROLINE J. HELLAWELL ◽  
...  

Objective.To determine whether serum markers of bone formation and resorption, used individually or in combination, can be used to identify subgroups who lose cartilage volume at different rates over 2 years within a knee osteoarthritis (OA) population.Methods.Changes in cartilage volume over 2 years were measured in 117 subjects with knee OA using magnetic resonance imaging. We examined relationships between change in cartilage volume and baseline serum markers of bone formation [intact N-terminal propeptide of type I procollagen (PINP) and osteocalcin] and resorption [N-telopeptide of type I collagen (NTX-I), C-telopeptide of type I collagen (CTX-I), and C-telopeptide of type I collagen (ICTP).Results.The baseline markers of bone formation, PINP and osteocalcin (p = 0.02, p = 0.01, respectively), and the baseline markers of bone resorption, CTX-I and NTX-I (p = 0.02 for both), were significantly associated with reduced cartilage loss. There were no significant associations between baseline ratios of bone formation to resorption markers and cartilage loss. However, when subjects were divided into subgroups with high or low bone formation markers (based on levels of marker ≥ mean or < mean for the population, respectively), in the subgroup with high PINP there was a significant association between increasing bone resorption markers CTX-I and NTX-I and reduced cartilage loss (p = 0.02, p = 0.001, respectively). Similarly, in the subgroup with high osteocalcin, there was a significant association between increasing CTX-I and NTX-I and reduced cartilage loss (p = 0.02, p = 0.003, respectively). In contrast, in subgroups with low bone formation markers, no significant associations were obtained between markers of bone resorption and cartilage loss.Conclusion.Overall, the results suggest that higher bone remodeling (i.e., higher serum levels of bone formation and resorption) is associated with reduced cartilage loss. Considering markers of bone formation and resorption together, it is possible to identify subgroups within the OA population who have reduced rates of cartilage loss.


2003 ◽  
Vol 90 (3) ◽  
pp. 557-564 ◽  
Author(s):  
Owen Kelly ◽  
Siobhan Cusack ◽  
Kevin D. Cashman

The beneficial effect of bovine whey protein (WP) on bone metabolism has been shown in adult human subjects and ovariectomised rats. However, its effect on bone formation in earlier life, particularly during periods of bone mineral accrual, has not been investigated. Twenty-one male rats (4 weeks old, Wistar strain) were randomised by weight into three groups of seven rats each and fedad libitumon a semi-purified low-Ca diet (3·0 g Ca/kg diet) containing 0 (control), 10 (diet WP1) or 20 (diet WP2) g bovine WP/kg for 47 d. On day 34 of the dietary intervention, all rats had two gelatine capsules containing demineralised bone powder implanted subcutaneously in the thorax region (a well-establishedin vivomodel of ectopic bone formation). At 14 d after implantation, alkaline phosphatase activity (reflective of bone formation) in the bone implants from animals fed WP1 and -2 diets was almost 2-fold (P<0·01) that of control animals. Insulin-like growth factor (IGF)-I mRNA levels were about 3-fold (P<0·05) higher in implants from animals fed the WP diets compared with those from control animals. Serum- and urine-based biomarkers of bone metabolism and bone mineral composition in intact femora were unaffected by WP supplementation. In conclusion, the present findings suggest that bovine WP can enhance the rate of ectopic bone formation in young growing rats fed a Ca-restricted diet. This effect may be mediated by an increased synthesis of IGF-I in growing bone. The effect of WP on bone formation warrants further investigation.


Sign in / Sign up

Export Citation Format

Share Document