Weight loss in postmenopausal obesity: no adverse alterations in body composition and protein metabolism

2000 ◽  
Vol 279 (1) ◽  
pp. E124-E131 ◽  
Author(s):  
Dympna Gallagher ◽  
Albert J. Kovera ◽  
Gaynelle Clay-Williams ◽  
Denise Agin ◽  
Patricia Leone ◽  
...  

We sought to determine if decrements in the mass of fat-free body mass (FFM) and other lean tissue compartments, and related changes in protein metabolism, are appropriate for weight loss in obese older women. Subjects were 14 healthy weight-stable obese (BMI ≥30 kg/m2) postmenopausal women >55 yr who participated in a 16-wk, 1,200 kcal/day nutritionally complete diet. Measures at baseline and 16 wk included FFM and appendicular lean soft tissue (LST) by dual-energy X-ray absorptiometry; body cell mass (BCM) by 40K whole body counting; total body water (TBW) by tritium dilution; skeletal muscle (SM) by whole body MRI; and fasting whole body protein metabolism through l-[1-13C]leucine kinetics. Mean weight loss (±SD) was 9.6 ± 3.0 kg ( P < 0.0001) or 10.7% of initial body weight. FFM decreased by 2.1 ± 2.6 kg ( P = 0.006), or 19.5% of weight loss, and did not differ from that reported (2.3 ± 0.7 kg). Relative losses of SM, LST, TBW, and BCM were consistent with reductions in body weight and FFM. Changes in [13C]leucine flux, oxidation, and synthesis rates were not significant. Follow-up of 11 subjects at 23.7 ± 5.7 mo showed body weight and fat mass to be below baseline values; FFM was nonsignificantly reduced. Weight loss was accompanied by body composition and protein kinetic changes that appear appropriate for the magnitude of body mass change, thus failing to support the concern that diet-induced weight loss in obese postmenopausal women produces disproportionate LST losses.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Shih Lung Woo ◽  
Dina Ben-Nissan ◽  
Zahra Ezzat-Zadeh ◽  
Jieping Yang ◽  
Lijun Zhang ◽  
...  

Abstract Objectives This study was designed to assess the effects of mixed nut consumption on body weight and composition, and gut microbiome in obese individuals. Primary outcome was change in body weight and composition. Secondary outcomes include gut microbiome composition, inflammatory markers, and plasma lipids. Methods The reported results are from an interim analysis (n = 50) of a randomized, placebo controlled, parallel study. Total enrollment target is 154 overweight/obese subjects (BMI 27–35 kg/m2). Participants were randomly assigned to consume either 1.5oz mixed tree nuts or pretzels with equal calorie content daily for 24 weeks. The study included a 12-week weight loss phase (500 kcal per day less than total daily energy expenditure), followed by a 12-week weight maintenance phase. Body composition, fasting blood, and stool samples were collected at baseline, week 12 and 24. Body composition, and vitals were analyzed, whereas plasma lipid profile, fecal microbiome, and microbiome metabolites analysis is still pending. Results At week 12, subjects from both the pretzel (n = 15, 10 dropouts; P = 0.009) and nut group (n = 22, 3 dropouts; P = 0.038) lost significant amount of weight. The trend of weight changes did not differ between groups (P = 0.530). Subjects from both groups were able to sustain weight loss through 24 weeks (pretzel: 81.43 ± 3.85 kg at baseline vs. 79.43 ± 4.08 kg at week 24, P = 0.028; nut: 84.26 ± 3.78 kg at baseline vs. 82.38 ± 3.72 kg at week 24, P = 0.026). At week 12, fat mass in both groups was significantly decreased (pretzel: P = 0.002; nut: P = 0.012). The trend of fat changes did not differ between groups (P = 0.547). Subjects from both groups were able to sustain fat loss through 24 weeks (pretzel: 30.84 ± 1.75 kg at baseline vs. 29.25 ± 2.12 kg at week 24, P = 0.024; nut: 31.51 ± 1.56 kg vs 30.21 ± 1.81 kg at week 24, P = 0.04). Muscle mass, and blood pressure were not significantly different between both groups. Conclusions Our data suggested that tree nuts could be consumed as part of a healthy weight loss meal plan without concern of causing weight gain. Further analysis of the remaining samples is needed to confirm results. Due to higher dropouts in the pretzel group, future intention-to-treat analysis is also needed to eliminate bias. Funding Sources This study is supported by the International Tree Nut Council.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Monika Młodzik-Czyżewska ◽  
Anna Malinowska ◽  
Agata Chmurzynska

AbstractA link has recently been underlined between one-carbon metabolism and body weight and body composition, suggesting that folate may account for body mass determination and lipid metabolism. The aim of this study was thus to analyze whether folate intake is associated with body weight, body mass index (BMI), body fat percentage, and liver status.409 subjects aged 20–40 were enrolled in Poznań, Poland from 2016 to 2018. Food intake was assessed using three-day food records. Folate intake was calculated based on food composition tables using the Diet 5.0 program (National Food and Nutrition Institute, Poland). Weight to 0.1 kg and height to 0.01 m were measured using an electronic scale and a stadiometer, respectively. BMI was calculated as body weight in kilograms divided by height in meters squared. Fat mass and lean body mass were determined using whole-body air-displacement plethysmography (BodPod, Cosmed, Italy). Genotyping of rs1801133 (MTHFR) was performed with TaqMan probes. The following biomarkers of liver steatosis were calculated: NAFLD liver fat score (NAFLD-LFS), fatty liver index (FLI), and hepatic steatosis index (HSI). To analyze the associations between folate intake and the measured parameters, we used multiple regression with adjustments for age, sex, and energy intake.The mean body weight was 78.57 ± 18.14 kg, BMI 25.96 ± 5.28 kg/m2, and fat percentage 29.20% ± 10.78%. The median folate intake was 299.3 μg/day. Dietary folate intake was negatively associated with body weight, BMI, and body fat percentage (p < 0.05 for all associations). Folate intake was also associated with fatty liver indices—namely HSI (p < 0.05) and FLI (p < 0.05). There was no association between folate intake and NAFLD-LFS. MTHFR rs1801133 polymorphism was not associated with any of the measured parameters.Our findings suggest that folate intake may affect body weight and composition, as well as liver status. Higher folate intake could have a protective effect against obesity, but further studies are necessary to investigate the mechanism.The authors declare that they have no conflict of interests.This work was supported by the Polish National Science Centre(grants 2014/15/B/NZ9/02134 and 2016/21/N/NZ9/01195).


2018 ◽  
Vol 17 (2) ◽  
pp. 121-132 ◽  
Author(s):  
Ya. V. Girsh ◽  
O. A. Gerasimchik

The steady rise of obesity in children and adolescents emphasizes the need for new, integrated approaches to its diagnosis and therapy. When diagnosing obesity and choosing methods for its correction, it is fundamentally important to use reliable methods of estimating the amount of adipose tissue. Using the body mass index is not always sufficient, since it does not provide complete information on quantitative content in the body weight of the patient’s body. For these purposes in clinical medicine use of bioimpedance analysis to assess the indicators, which characterize the basal metabolism, active cell mass, fat and basirova mass and total water content in the body. However, the holding of bioimpedance body composition analysis is currently limited mainly to dietetics and sports medicine, and adult patients. Quite interesting is the use of the bioimpedance method in the pediatric age group for accurate evaluation of body composition of children of various ages and body weight that will allow for dynamic control of all types of metabolism to evaluate the effectiveness of the observation and treatment of patients with overweight and obesity.


1975 ◽  
Vol 85 (2) ◽  
pp. 193-204 ◽  
Author(s):  
K. R. Drew ◽  
J. T. Reid

SUMMARYForty-eight cross-bred wether lambs were used to measure the effects of severe feed restriction and realimentation on the body and carcass composition of immature sheep. Ten of the total number of sheep were used as an initial slaughter group, 12 were continuously fed (six at the ad libitum level of intake and six at 70% ad libitum), 26 were progressively underfed and 18 of them were realimented after a mean loss of about 25% empty body weight (EBW).Shrunk body weight (SBW = weight after an 18-h fast with access to water) was a good predictor of empty body weight (EBW = SBW minus gastro-intestinal contents) and the EBW of continuously growing sheep was a good predictor of body water, protein, fat, energy and ash, but it was not precise after realimentation, particularly in the early stages of refeeding. Restricted continuous supermaintenance feeding did not alter the body composition of the sheep from that of the sheep on the ad libitum intake at any given EBW except slightly to increase the carcass protein content.Although underfeeding to produce an EBW loss of 25% generally produced changes in the chemical body components which were similar to a reversal of normal growth, body fat did not decrease during the first half of the submaintenance feeding and did not increase during the first 2 weeks of realimentation. Under all circumstances percentage body fat was very closely related to percentage body water.Sheep realimented at 26 kg (after losing 25% EBW) contained, at 45 kg EBW, more bodywater and protein and less fat and energy than continuously-fed animals of the same EBW. The treatment effects were greater in the carcass and had little effect on the non-carcass EBW, with th e result that the refed sheep had 1800 g more water × protein in a carcass that weighed 700 g more than one from a normally grown sheep of the same EBW. The regression of calorific value of th e ash-free dry matter on body fat as a percentage of ash-free dry matter gave calorific values of body protein and fat as 5·652 and 9·342 kcal/g of ash-free dry matter, respectively.


1998 ◽  
Vol 94 (3) ◽  
pp. 321-331 ◽  
Author(s):  
Derek C. MacAllan ◽  
Margaret A. McNurlan ◽  
Anura V. Kurpad ◽  
George De Souza ◽  
Prakash S. Shetty ◽  
...  

1. Differing patterns of protein metabolism are seen in wasting due to undernutrition and wasting due to chronic infection. 2. We investigated whole body energy and protein metabolism in nine subjects with pulmonary tuberculosis, six undernourished subjects (body mass index < 18.5 kg/m2) and seven control subjects from an Indian population. Fasting subjects were infused with l-[1-13C] leucine (2.3 μmol · h−1 · kg−1) for 8 h, 4 h fasted then 4 h fed. Leucine kinetics were derived from 13C-enrichment of leucine and α-ketoisocaproic acid in plasma and CO2 in breath. 3. Undernourished subjects, but not tuberculosis subjects, had higher rates of whole body protein turnover per unit lean body mass than controls [163.1 ± 9.4 and 148.6 ± 14.6 μmol compared with 142.8 ± 14.7 μmol leucine/h per kg, based on α-ketoisocaproic acid enrichment (P = 0.039)]. 4. In response to feeding, protein oxidation increased in all groups. Tuberculosis subjects had the highest fed rates of oxidation (47.0 ± 10.5 compared with 37.1 ± 5.4 μmol · h−1 · kg−1 in controls), resulting in a less positive net protein balance in the fed phase (controls, 39.7 ± 6.2; undernourished subjects, 29.2 ± 10.6; tuberculosis subjects, 24.5 ± 93; P = 0.010). Thus fed-phase tuberculosis subjects oxidized a greater proportion of leucine flux (33.2%) than either of the other groups (controls, 24.0%; undernourished subjects, 24.0%; P = 0.017). 5. Tuberculosis did not increase fasting whole body protein turnover but impaired the anabolic response to feeding compared with control and undernourished subjects. Such ‘anabolic block’ may contribute to wasting in tuberculosis and may represent the mechanism by which some inflammatory states remain refractory to nutrition support.


2007 ◽  
Vol 292 (5) ◽  
pp. E1426-E1432 ◽  
Author(s):  
Morton G. Burt ◽  
James Gibney ◽  
Ken K. Y. Ho

How protein metabolism is perturbed during chronic glucocorticoid excess is poorly understood. The aims were to investigate the impact of chronic glucocorticoid excess and restoration of eucortisolemia in Cushing's syndrome (CS) on whole body protein metabolism. Eighteen subjects with CS and 18 normal subjects (NS) underwent assessment of body composition using DEXA and whole body protein turnover with a 3-h constant infusion of l-[13C]leucine, allowing calculation of rates of leucine appearance (leucine Ra), leucine oxidation (Lox), and leucine incorporation into protein (LIP). Ten subjects with CS were restudied after restoration of eucortisolemia. Percentage FM was greater (43.9 ± 1.6 vs. 33.8 ± 2.4%, P = 0.002) and LBM lower (52.7 ± 1.6 vs. 62.1 ± 2.3%, P = 0.002) in CS. LBM was significantly correlated ( r2 > 0.44, P < 0.005) to leuceine Ra, Lox, and LIP in both groups. After correcting for LBM, leucine Ra (133 ± 5 vs. 116 ± 5 μmol/min, P = 0.02) and Lox (29 ± 1 vs. 24 ± 1 μmol/min, P = 0.01) were greater in CS. FM significantly correlated ( r2 = 0.23, P < 0.05) with leucine Ra and LIP, but not Lox in CS. In multiple regression, LBM was an independent determinant of all three indexes of leucine turnover, FM of leucine Ra, and LIP and CS of Lox. Following restoration of eucortisolemia, Lox was reduced (Δ−7.5 ± 2.6 μmol/min, P = 0.02) and LIP increased (Δ+15.2 ± 6.2 μmol/min, P = 0.04). In summary, whole body protein metabolism in CS is influenced by changes in body composition and glucocorticoid excess per se, which increases protein oxidation. Enhanced protein oxidation is a likely explanation for the reduced protein mass in CS. Successful treatment of CS reduces protein oxidation and increases protein synthesis to prevent ongoing protein loss.


2006 ◽  
Vol 291 (3) ◽  
pp. E639-E646 ◽  
Author(s):  
Michael J. Toth ◽  
Cynthia K. Sites ◽  
Dwight E. Matthews

The age-related decline in fat-free mass is accelerated in women after menopause, implying that ovarian hormone deficiency may have catabolic effects on lean tissue. Because fat-free tissue mass is largely determined by its protein content, alterations in ovarian hormones would likely exert regulatory control through effects on protein balance. To address the hypothesis that ovarian hormones regulate protein metabolism, we examined the effect of menopausal status and hormone replacement therapy (HRT) on protein turnover. Whole body protein breakdown, oxidation, and synthesis were measured under postabsorptive conditions using [13C]leucine in healthy premenopausal ( n = 15, 49 ± 1 yr) and postmenopausal ( n = 18, 53 ± 1 yr) women. In postmenopausal women, whole body protein turnover and plasma albumin synthesis rates (assessed using [13C]leucine and [2H]phenylalanine) were also measured following 2 mo of treatment with oral HRT (0.625 mg conjugated estrogens + 2.5 mg medroxyprogesterone acetate, n = 9) or placebo ( n = 9). No differences in whole body protein breakdown, oxidation, or synthesis were found between premenopausal and postmenopausal women. Protein metabolism remained similar between groups after statistical adjustment for differences in adiposity and when subgroups of women matched for percent body fat were compared. In postmenopausal women, no effect of HRT was found on whole body protein breakdown, synthesis, or oxidation. In contrast, our results support a stimulatory effect of HRT on albumin fractional synthesis rate, although this did not translate into alterations in circulating albumin concentrations. In conclusion, our results suggest no detrimental effect of ovarian hormone deficiency coincident with the postmenopausal state, and no salutary effect of hormone repletion with HRT, on rates of whole body protein turnover, although oral HRT regimens may increase the synthesis rates of albumin.


2001 ◽  
Vol 101 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Sarah L. DUGGLEBY ◽  
Alan A. JACKSON

Epidemiological evidence shows that small size at birth is associated with an increased risk of developing cardiovascular and metabolic disease in adult life. We have examined the relationships between size at birth and maternal body composition and protein turnover in normal pregnant women. A group of 27 multiparous Caucasian women with singleton pregnancies were studied at around 18 and 28 weeks' gestation. Body composition was determined by anthropometry, and whole-body protein turnover was estimated by using a single oral dose of [15N]glycine and the end-product method. The baby's weight and length were measured within 48 h of birth. Mothers with a greater lean body mass had higher rates of protein turnover at 18 weeks' gestation. This association was largely accounted for by differences in the mother's visceral, rather than muscle, mass. Mothers who had higher protein turnover at 18 weeks' gestation had babies that were longer at birth. After adjustment for the duration of gestation and the baby's sex, 26% of the variation in length at birth was accounted for by maternal protein synthesis at 18 weeks' gestation. Maternal protein intake was not associated with the baby's birth length. Thus the mother's ability to nourish her fetus is influenced by her body composition and her rate of protein turnover. Dietary intake does not adequately characterize this ability.


1988 ◽  
Vol 117 (1) ◽  
pp. 85-90 ◽  
Author(s):  
A. T. Holder ◽  
J. A. Blows ◽  
R. Aston ◽  
P. C. Bates

ABSTRACT Dwarf mice were treated for 10 days with phosphate-buffered saline (PBS), human growth hormone (hGH) or hGH with monoclonal antibody EB1 (hGH/MAB-EB1); for each treatment there were three groups which received 50, 75 or 100% of the amount of food eaten when available ad libitum. The PBS control groups lost more or gained less weight than equivalent groups receiving hGH alone, and mice given hGH/MAB-EB1 showed a greater weight gain than those in comparable groups receiving hGH alone. When weight gain or loss was expressed as g/g food eaten, groups treated with hGH gained more or lost less than the PBS groups. Similarly, weight gain/g food was significantly greater in hGH/MAB-EB1 animals than in the comparable groups given hGH alone. A similar pattern of response was observed for increases in tail length and uptake of 35SO42− into costal cartilage in vivo. For mice given hGH alone, fat content was decreased compared with that in the equivalent group given PBS, and mice treated with hGH/MAB-EB1 had less fat than the equivalent group given hGH alone. Administration of hGH alone caused a concomitant increase in protein content and body weight such that, compared with mice given PBS, there was no significant increase in protein as a proportion of body weight. However, hGH/MAB-EB1 caused an increase in whole body protein which was significantly greater than that for the equivalent group given hGH alone, when expressed as per cent body weight. Monoclonal antibody EB1 has been shown to enhance the actions of hGH on growth and body composition in Snell dwarf mice and to increase food conversion efficiency. J. Endocr. (1988) 117,85–90


Sign in / Sign up

Export Citation Format

Share Document