scholarly journals Secretin is not necessary for exocrine pancreatic development and growth in mice

2011 ◽  
Vol 301 (5) ◽  
pp. G791-G798 ◽  
Author(s):  
Maria Dolors Sans ◽  
Maria Eugenia Sabbatini ◽  
Stephen A. Ernst ◽  
Louis G. D'Alecy ◽  
Ichiko Nishijima ◽  
...  

Adaptive exocrine pancreatic growth is mediated primarily by dietary protein and the gastrointestinal hormone cholecystokinin (CCK). Feeding trypsin inhibitors such as camostat (FOY-305) is known to induce CCK release and stimulate pancreatic growth. However, camostat has also been reported to stimulate secretin release and, because secretin often potentiates the action of CCK, it could participate in the growth response. Our aim was to test the role of secretin in pancreatic development and adaptive growth through the use of C57BL/6 mice with genetic deletion of secretin or secretin receptor. The lack of secretin in the intestine or the secretin receptor in the pancreas was confirmed by RT-PCR. Other related components, such as vasoactive intestinal polypeptide (VIP) receptors (VPAC1and VPAC2), were not affected. Secretin increased cAMP levels in acini from wild-type (WT) mice but had no effect on acini from secretin receptor-deleted mice, whereas VIP and forskolin still induced a normal response. Secretin in vivo failed to induce fluid secretion in receptor-deficient mice. The pancreas of secretin or secretin receptor-deficient mice was of normal size and histology, indicating that secretin is not necessary for normal pancreatic differentiation or maintenance. When WT mice were fed 0.1% camostat in powdered chow, the pancreas doubled in size in 1 wk, accompanied by parallel increases in protein and DNA. Camostat-fed littermate secretin and secretin receptor-deficient mice had similar pancreatic mass to WT mice. These results indicate that secretin is not required for normal pancreatic development or adaptive growth mediated by CCK.

2006 ◽  
Vol 203 (7) ◽  
pp. 1795-1803 ◽  
Author(s):  
Himanshu Kumar ◽  
Taro Kawai ◽  
Hiroki Kato ◽  
Shintaro Sato ◽  
Ken Takahashi ◽  
...  

IFN-β promoter stimulator (IPS)-1 was recently identified as an adapter for retinoic acid–inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda5), which recognize distinct RNA viruses. Here we show the critical role of IPS-1 in antiviral responses in vivo. IPS-1–deficient mice showed severe defects in both RIG-I– and Mda5-mediated induction of type I interferon and inflammatory cytokines and were susceptible to RNA virus infection. RNA virus–induced interferon regulatory factor-3 and nuclear factor κB activation was also impaired in IPS-1–deficient cells. IPS-1, however, was not essential for the responses to either DNA virus or double-stranded B-DNA. Thus, IPS-1 is the sole adapter in both RIG-I and Mda5 signaling that mediates effective responses against a variety of RNA viruses.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


Author(s):  
Jelena Damm ◽  
Joachim Roth ◽  
Rüdiger Gerstberger ◽  
Christoph Rummel

AbstractBackground:Studies with NF-IL6-deficient mice indicate that this transcription factor plays a dual role during systemic inflammation with pro- and anti-inflammatory capacities. Here, we aimed to characterize the role of NF-IL6 specifically within the brain.Methods:In this study, we tested the capacity of short interfering (si) RNA to silence the inflammatory transcription factor nuclear factor-interleukin 6 (NF-IL6) in brain cells underResults:In cells of a mixed neuronal and glial primary culture from the ratConclusions:This approach was, thus, not suitable to characterize the role NF-IL6 in the brain


1981 ◽  
Author(s):  
J P Cazenave ◽  
A Beretz ◽  
A Stierlé ◽  
R Anton

Injury to the endothelium (END) and subsequent platelet (PLAT)interactions with the subEND are important steps in thrombosis and atherosclerosis. Thus,drugs that protect the END from injury and also inhibit PLAT function are of interest. It has been shown that some flavonoids(FLA), a group of compounds found in plants, prevent END desquamation in vivo, inhibit cyclic nucleotide phosphodiesterases(PDE)and inhibit PLAT function. We have studied the structure-activity relationships of 13 purified FLA on aggregation and secretion of 14c-5HT of prelabeled washed human PLAT induced by ADP, collagen(COLL) and thrombin(THR). All the FLA were inhibitors of the 3 agents tested. Quercetin(Q), was the second best after fisetin. It inhibited secretion and aggregation with I50 of 330µM against 0.1 U/ML.THR, 102µM against 5µM ADP and 40 µM against COLL. This inhibitory effect is in the range of that of other PDE inhibitors like dipyridamole or 3-isobutyl-l- methylxanthine. The aggregation induced by ADP, COLL and THR is at least mediated by 3 mechanisms that can be inhibited by increasing cAMP levels. We next investigated if Q, which is a PDE inhibitor of bovine aortic microsomes,raises PLAT cAMP levels. cAMP was measured by a protein-binding method. ADP- induced aggregation(5µM) was inhibited by PGI2 (0.1 and 0.5 nM) . Inhibition was further potentiated(l.7 and 3.3 times) by lOµM Q, which alone has no effect on aggregation. The basal level of cAMP(2.2 pmol/108PLAT) was not modified by Q (50 to 500µM). Using these concentrations of Q,the rise in cAMP caused by PGI2(0.1 and 0.5nM) was potentiated in a dose dependent manner. Q potentiated the effect of PGI2 on the maximum level of cAMP and retarded its breakdown. Thus Q and possibly other FLA could inhibit the interaction of PLAT with the components of the vessel wall by preventing END damage and by inhibiting PLAT function through a rise in cAMP secondary to PDE inhibition and potentiation of the effect of vascular PGI2 on PLAT adenylate cyclase.


2021 ◽  
Author(s):  
Arnika K Wagner ◽  
Nadir Kadri ◽  
Chris Tibbitt ◽  
Koen van de Ven ◽  
Sunitha Bagawath-Singh ◽  
...  

ABSTRACTAlthough PD-1 was shown to be a hallmark of T cells exhaustion, controversial studies have been reported on the role of PD-1 on NK cells. Here, we found by flow cytometry and single cell RNA sequencing analysis that PD-1 can be expressed on MHC class I-deficient tumor-infiltrating NK cells in vivo. We also demonstrate distinct alterations in the phenotype of PD-1-deficient NK cells which in part could be attributed to a decrease in tumor-infiltrating NK cells in PD-1-deficient mice. NK cells from PD-1-deficient mice exhibited a more mature phenotype which might reduce their capacity to migrate and kill in vivo. Finally, our results demonstrate that PD-L1 molecules in membranes of PD-1-deficient NK cells migrate faster than in NK cells from wildtype mice, suggesting that PD-1 and PD-L1 form cis interactions with each other on NK cells.


Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2583-2590 ◽  
Author(s):  
Fulu Liu ◽  
Jennifer Poursine-Laurent ◽  
Huai Yang Wu ◽  
Daniel C. Link

Multiple hematopoietic cytokines can stimulate granulopoiesis; however, their relative importance in vivo and mechanisms of action remain unclear. We recently reported that granulocyte colony-stimulating factor receptor (G-CSFR)-deficient mice have a severe quantitative defect in granulopoiesis despite which phenotypically normal neutrophils were still detected. These results confirmed a role for the G-CSFR as a major regulator of granulopoiesis in vivo, but also indicated that G-CSFR independent mechanisms of granulopoiesis must exist. To explore the role of interleukin-6 (IL-6) in granulopoiesis, we generated IL-6 × G-CSFR doubly deficient mice. The additional loss of IL-6 significantly worsened the neutropenia present in young adult G-CSFR–deficient mice; moreover, exogenous IL-6 stimulated granulopoiesis in vivo in the absence of G-CSFR signals. Near normal numbers of myeloid progenitors were detected in the bone marrow of IL-6 × G-CSFR–deficient mice and their ability to terminally differentiate into mature neutrophils was observed. These results indicate that IL-6 is an independent regulator of granulopoiesis in vivo and show that neither G-CSFR or IL-6 signals are required for the commitment of multipotential progenitors to the myeloid lineage or for their terminal differentiation.


1999 ◽  
Vol 82 (S 01) ◽  
pp. 4-7 ◽  
Author(s):  
Victoria A. Ploplis ◽  
Steven Busuttil ◽  
Peter Carmeliet ◽  
Desire Collen ◽  
Edward F. Plow

SummaryIn addition to its preeminent role in fibrinolysis, the plasminogen system is believed to play a key role in mediating cell migration. Leukocyte migration into the vessel wall is a key and early event in the development of the lesions of atherosclerosis and restenosis, pathologies which may be viewed as specific examples of vascular inflammatory responses. The development of mice in which the plasminogen gene has been inactivated affords an opportunity to test the contribution of plasminogen in leukocyte migration during in vivo. This article summarizes recent studies conducted in murine models of the inflammatory repsonse, restenosis and atherosclerosis in which leukocyte migration, and in particular monocyte/macrophage migration, has been evaluated in plasminogen-deficient mice. Recruitment of these cells through the vessel wall in inflammatory response models and into the vessel wall in restenosis and transplant atherosclerosis models is substantially blunted. These data implicate plasminogen in the migration of leukocytes in these murine models. With the numerous correlations between components and/or activation of the plasminogen system in restenosis and atherosclerosis, these results also support a role of plasminogen in the corresponding human pathologies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 691-691
Author(s):  
Joerg Schuettrumpf ◽  
Jianxiang Zou ◽  
Shin Jen Tai ◽  
Alexander Schlachterman ◽  
Kian Tian ◽  
...  

Abstract Coagulation proteases are crucial for hemostasis and have also been implicated in inflammatory responses, blood vessel formation, and tumor cell metastasis. Cellular responses triggered by proteases are mediated by protease-activated receptors (PAR). Adeno-associated virus (AAV)-2 vectors hold promise for the treatment of several diseases and were already tested in Phase I studies for hemophilia B following intramuscular or hepatic artery deliveries. Previously, we determined an unexpected inhibitory effect (60–70% downregulation) on AAV-2 and adenovirus mediated gene transfer by thrombin- or FXa inhibitors. These results were independent of mouse strain, transgene product, or vector promoter, and gene expression by vectors of alternate serotypes AAV-5 or -8, which do not share cellular receptors with AAV-2, were not affected by any drug. Here we present in vivo evidence of a novel role of coagulation proteases and PARs in modulating gene transfer by viral vectors. We tested AAV-2 gene transfer efficacy in (a) animal models for proteases deficiency [FX and FIX deficient animals], (b) PAR-1 or PAR-2 deficient mice, (c) and following in vivo activation of PARs. FX knockout mice with residual activity of only 1–3% of normal (n=9) were injected with AAV-2-human(h)FIX vector and compared to littermates with FX levels of 50% (n=4). FIX expression levels were 2-fold lower among FX-deficient mice compared to controls (p<0.03). The second model, FIX deficient mice, received AAV expressing α1-antitrypsin (AAT-1). Severe hemophilia B models due to large-gene deletion (n=5) or missense mutation (R180T) in the FIX gene (n=3, <1% FIX) were compared to littermate controls with normal FIX levels (n=6). The results showed that AAT-1 levels among hemophilia B mice were 2-fold lower than in controls (24 vs 48 ng/ml, p<0.05, respectively). Because PAR activation by thrombin enhances αVβ5 (co-receptor for AAV-2 and adenovirus)-dependent cellular function (JBC 276:10952) we hypothesized that PAR modulates AAV-2 gene transfer. Homozygous (−/−) or heterozygous deficient (+/−) PAR-1 (n=24) or PAR-2 (n=25) mice received AAV-2-hF.IX and were compared to littermate controls (+/+). FIX levels among PAR-1 controls (1.9 μg/ml) were comparable to levels obtained among heterozygotes but higher than in homozygotes (1.1 μg/ml, p<0.02). Similarly, PAR-2 deficient mice presented 2-fold lower FIX levels than controls (0.7 vs 1.3 μg/ml, p<0.02) whereas heterozygous mice presented intermediate levels. To further confirm the role of PARs in AAV-2 gene transfer we activated PARs prior to AAV-2 injection. C57BL/6 mice received specific peptide agonists at doses ranging from 10 to 60 μM/kg (n=4 per dose and per peptide) and were compared to controls receiving scramble peptide. FIX levels increased 1.5 to 5-fold in a dose-dependent manner and the activation of PAR-1 and -2 simultaneously was superior to single peptide. Gene copy monitoring revealed low vector uptake by livers of PAR knockout mice while activation of PARs increased uptake. In conclusion, these data demonstrated a novel in vivo role of coagulation proteases and PARs on viral vectors (AAV-2 and adenovirus)-mediated gene expression and provide an alternative target to modulate gene therapy strategies.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4446-4452 ◽  
Author(s):  
Gaëtan Berger ◽  
Daqing W. Hartwell ◽  
Denisa D. Wagner

P-selectin is an adhesion receptor for leukocytes expressed by activated platelets and endothelial cells. To assess a possible role of P-selectin in platelet clearance, we adapted an in vivo biotinylation technique in mice. Wild-type and P-selectin–deficient mice were infused with N-hydroxysuccinimido biotin. The survival of biotinylated platelets was followed by flow cytometry after labeling with fluorescent streptavidin. Both wild-type and P-selectin–deficient platelets presented identical life spans of about 4.7 days, suggesting that P-selectin does not play a role in platelet turnover. When biotinylated platelets were isolated, activated with thrombin, and reinjected into mice, the rate of platelet clearance was unchanged. In contrast, storage of platelets at 4°C caused a significant reduction in their life span in vivo but again no significant differences were observed between the two genotypes. The infused thrombin-activated platelets rapidly lost their surface P-selectin in circulation, and this loss was accompanied by the simultaneous appearance of a 100-kD P-selectin fragment in the plasma. This observation suggests that the platelet membrane P-selectin was shed by cleavage. In conclusion, this study shows that P-selectin, despite its binding to leukocytes, does not mediate platelet clearance. However, the generation of a soluble form of P-selectin on platelet activation may have biological implications in modulating leukocyte recruitment or thrombus growth.


2017 ◽  
Vol 214 (7) ◽  
pp. 1925-1935 ◽  
Author(s):  
Mina Kozai ◽  
Yuki Kubo ◽  
Tomoya Katakai ◽  
Hiroyuki Kondo ◽  
Hiroshi Kiyonari ◽  
...  

The chemokine receptor CCR7 directs T cell relocation into and within lymphoid organs, including the migration of developing thymocytes into the thymic medulla. However, how three functional CCR7 ligands in mouse, CCL19, CCL21Ser, and CCL21Leu, divide their roles in immune organs is unclear. By producing mice specifically deficient in CCL21Ser, we show that CCL21Ser is essential for the accumulation of positively selected thymocytes in the thymic medulla. CCL21Ser-deficient mice were impaired in the medullary deletion of self-reactive thymocytes and developed autoimmune dacryoadenitis. T cell accumulation in the lymph nodes was also defective. These results indicate a nonredundant role of CCL21Ser in the establishment of self-tolerance in T cells in the thymic medulla, and reveal a functional inequality among CCR7 ligands in vivo.


Sign in / Sign up

Export Citation Format

Share Document