scholarly journals Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism

2010 ◽  
Vol 299 (6) ◽  
pp. G1211-G1221 ◽  
Author(s):  
Jiansheng Huang ◽  
Imene Tabbi-Anneni ◽  
Viswanath Gunda ◽  
Li Wang

Nuclear factor erythroid-2 related factor 2 (Nrf2) plays a pivotal role in cytoprotection against both endogenous and exogenous stresses. Here, we establish a novel molecular link between Nrf2, nuclear receptor small heterodimer partner (SHP; NROB2), lipogenic genes, and hepatic lipid homeostasis. Deletion of Nrf2 ( Nrf2−/−) in mice resulted in a reduced liver weight, a decrease in fatty acid content of hepatic triacylglycerol, as well as concomitant increases in the levels of serum VLDL-triglyceride (TG), HDL cholesterol, and ketone bodies at 6 mo of age. Liver weight and hepatic TG content were consistently lower in Nrf2−/− mice upon a high-fat challenge. This phenotype was accompanied by downregulation of genes in lipid synthesis and uptake and upregulation of genes in lipid oxidation in older Nrf2−/− mice. Interestingly, SHP expression was induced with age in Nrf2+/+ mice but decreased by Nrf2 deficiency. Forced expression and activation of Nrf2 by Nrf2 activators consistently induced SHP expression, and Nrf2 was identified as a novel activator of the SHP gene transcription. We also identified PPAR-γ, Fas, Scd1, and Srebp-1 as direct targets of Nrf2 activation. These findings provide evidence for a role of Nrf2 in the modulation of hepatic lipid homeostasis through transcriptional activation of SHP and lipogenic gene expression.

2010 ◽  
Vol 432 (2) ◽  
pp. 249-254 ◽  
Author(s):  
Aldo Grefhorst ◽  
Marijke Schreurs ◽  
Maaike H. Oosterveer ◽  
Victor A. Cortés ◽  
Rick Havinga ◽  
...  

GSD-1 (glycogen storage disease type 1) is caused by an inherited defect in glucose-6-phosphatase activity, resulting in a massive accumulation of hepatic glycogen content and an induction of de novo lipogenesis. The chlorogenic acid derivative S4048 is a pharmacological inhibitor of the glucose 6-phosphate transporter, which is part of glucose-6-phosphatase, and allows for mechanistic studies concerning metabolic defects in GSD-1. Treatment of mice with S4048 resulted in an ~60% reduction in blood glucose, increased hepatic glycogen and triacylglycerol (triglyceride) content, and a markedly enhanced hepatic lipogenic gene expression. In mammals, hepatic expression of lipogenic genes is regulated by the co-ordinated action of the transcription factors SREBP (sterol-regulatory-element-binding protein)-1c, LXRα (liver X receptor α) and ChREBP (carbohydrate-response-element-binding protein). Treatment of Lxra−/− mice and Chrebp−/− mice with S4048 demonstrated that ChREBP, but not LXRα, mediates the induction of hepatic lipogenic gene expression in this murine model of GSD-1. Thus ChREBP is an attractive target to alleviate derangements in lipid metabolism observed in patients with GSD-1.


Author(s):  
De Xie ◽  
Hairong Zhao ◽  
Jiaming Lu ◽  
Furong He ◽  
Weidong Liu ◽  
...  

Uric acid is the end metabolite derived from the oxidation of purine compounds. Overwhelming evidence shows the vital interrelation between hyperuricemia (HUA) and non-alcoholic fatty liver disease (NAFLD). However, the mechanisms for this association remain unclear. In this study, we investigated the effect of HUA on fat accumulation in human HepG2 hepatoma cells and urate oxidase-knockout (Uox-KO) mice. HUA activated c-Jun N-terminal kinase (JNK) in vivo and in vitro. Furthermore, inhibiting JNK activation by a JNK-specific inhibitor, SP600125, decreased fat accumulation and lipogenic gene expression induced by HUA. Overexpression of the lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase 1 was via activation of JNK, which was blocked by the JNK inhibitor SP600125. HUA activated AP-1 to upregulate lipogenic gene expression via JNK activation. In addition, HUA caused mitochondrial dysfunction and reactive oxygen species production. Pre-treatment with the antioxidant N-acetyl-L-cysteine could ameliorate HUA-activated JNK and hepatic steatosis. These data suggest that ROS/JNK/AP-1 signaling plays an important role in HUA-mediated fat accumulation in liver.


2010 ◽  
Vol 140 (5) ◽  
pp. 919-924 ◽  
Author(s):  
Anil K. G. Kadegowda ◽  
Erin E. Connor ◽  
Beverly B. Teter ◽  
Joseph Sampugna ◽  
Pierluigi Delmonte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document