scholarly journals Activation of peroxisome proliferator-activated receptor-γ by rosiglitazone improves lipid homeostasis at the adipose tissue-liver axis in ethanol-fed mice

2012 ◽  
Vol 302 (5) ◽  
pp. G548-G557 ◽  
Author(s):  
Xiuhua Sun ◽  
Yunan Tang ◽  
Xiaobing Tan ◽  
Qiong Li ◽  
Wei Zhong ◽  
...  

The development of alcohol-induced fatty liver is associated with a reduction of white adipose tissue (WAT). Peroxisome proliferator-activated receptor (PPAR)-γ prominently distributes in the WAT and plays a crucial role in maintaining adiposity. The present study investigated the effects of PPAR-γ activation by rosiglitazone on lipid homeostasis at the adipose tissue-liver axis. Adult C57BL/6 male mice were pair fed liquid diet containing ethanol or isocaloric maltose dextrin for 8 wk with or without rosiglitazone supplementation to ethanol-fed mice for the last 3 wk. Ethanol exposure downregulated adipose PPAR-γ gene and reduced the WAT mass in association with induction of inflammation, which was attenuated by rosiglitazone. Ethanol exposure stimulated lipolysis but reduced fatty acid uptake capacity in association with dysregulation of lipid metabolism genes. Rosiglitazone normalized adipose gene expression and corrected ethanol-induced lipid dyshomeostasis. Ethanol exposure induced steatosis and upregulated inflammatory genes in the liver, which were attenuated by rosiglitazone. Hepatic peroxisomal fatty acid β-oxidation was suppressed by ethanol in associated with inhibition of acyl-coenzyme A oxidase 1. Rosiglitazone elevated plasma adiponectin level and normalized peroxisomal fatty acid β-oxidation rate. However, rosiglitazone did not affect ethanol-reduced very low-density lipoprotein secretion from the liver. These results demonstrated that activation of PPAR-γ by rosiglitazone reverses ethanol-induced adipose dysfunction and lipid dyshomeostasis at the WAT-liver axis, thereby abrogating alcoholic fatty liver.

2013 ◽  
Vol 304 (4) ◽  
pp. G420-G427 ◽  
Author(s):  
Pierre Miegueu ◽  
David H. St-Pierre ◽  
Marc Lapointe ◽  
Pegah Poursharifi ◽  
HuiLing Lu ◽  
...  

Obesity, inflammation, and insulin resistance are closely linked. Substance P (SP), via its neurokinin 1 receptor (NK1R), mediates inflammatory and, possibly, neuroendocrine processes. We examined SP effects on lipid storage and cytokine production in 3T3-L1 adipocytes and adipose tissues. 3T3-L1 adipocytes and preadipocytes express NK1R, and 8 days of SP supplementation during differentiation to 3T3-L1 preadipocytes decreased lipid droplet accumulation. SP (10 nM, 24 h) increased lipolysis in primary adipocytes (138 ± 7%, P < 0.05) and reduced fatty acid uptake (−31 ± 7%, P < 0.05) and mRNA expression of the differentiation-related transcription factors peroxisome proliferator-activated receptor-γ type 2 (−64 ± 2%, P < 0.001) and CCAAT enhancer-binding protein (CEBP)-α (−65 ± 2%, P < 0.001) and the lipid storage genes fatty acid-binding protein type 4 (−59 ± 2%, P < 0.001) and diacylglycerol O-acyltransferase-1 (−45 ± 2%, P < 0.01) in 3T3-L1 adipocytes, while CD36, a fatty acid transporter (+82 ± 19%, P < 0.01), was augmented. SP increased secretion of complement C3 (148 ± 15%, P < 0.04), monocyte chemoattractant protein-1 (156 ± 16%, P < 0.03), and keratinocyte-derived chemokine (148 ± 18%, P = 0.045) in 3T3-L1 adipocytes and monocyte chemoattractant protein-1 (496 ± 142%, P < 0.02) and complement C3 (152 ± 25%, P < 0.04) in adipose tissue and primary adipocytes, respectively. These SP effects were accompanied by downregulation of insulin receptor substrate 1 (−82 ± 2%, P < 0.01) and GLUT4 (−76 ± 2%, P < 0.01) mRNA expression, and SP acutely blocked insulin-mediated stimulation of fatty acid uptake and Akt phosphorylation. Although adiponectin secretion was unchanged, mRNA expression was decreased (−86 ± 8%, P < 0.001). In humans, NK1R expression correlates positively with plasma insulin, fatty acid, and complement C3 and negatively with adiponectin, CEBPα, CEBPβ, and peroxisome proliferator-activated receptor-γ mRNA expression in omental, but not subcutaneous, adipose tissue. Our results suggest that, beyond its neuroendocrine and inflammatory effects, SP could also be involved in targeting adipose tissue and influencing insulin resistance.


2006 ◽  
Vol 92 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Arya M. Sharma ◽  
Bart Staels

Abstract Context: Adipose tissue is a metabolically dynamic organ, serving as a buffer to control fatty acid flux and a regulator of endocrine function. In obese subjects, and those with type 2 diabetes or the metabolic syndrome, adipose tissue function is altered (i.e. adipocytes display morphological differences alongside aberrant endocrine and metabolic function and low-grade inflammation). Evidence Acquisition: Articles on the role of peroxisome proliferator-activated receptor γ (PPARγ) in adipose tissue of healthy individuals and those with obesity, metabolic syndrome, or type 2 diabetes were sourced using MEDLINE (1990–2006). Evidence Synthesis: Articles were assessed to provide a comprehensive overview of how PPARγ-activating ligands improve adipose tissue function, and how this links to improvements in insulin resistance and the progression to type 2 diabetes and atherosclerosis. Conclusions: PPARγ is highly expressed in adipose tissue, where its activation with thiazolidinediones alters fat topography and adipocyte phenotype and up-regulates genes involved in fatty acid metabolism and triglyceride storage. Furthermore, PPARγ activation is associated with potentially beneficial effects on the expression and secretion of a range of factors, including adiponectin, resistin, IL-6, TNFα, plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and angiotensinogen, as well as a reduction in plasma nonesterified fatty acid supply. The effects of PPARγ also extend to macrophages, where they suppress production of inflammatory mediators. As such, PPARγ activation appears to have a beneficial effect on the relationship between the macrophage and adipocyte that is distorted in obesity. Thus, PPARγ-activating ligands improve adipose tissue function and may have a role in preventing progression of insulin resistance to diabetes and endothelial dysfunction to atherosclerosis.


2001 ◽  
Vol 280 (4) ◽  
pp. C954-C961 ◽  
Author(s):  
Randall L. Mynatt ◽  
Jacqueline M. Stephens

Agouti is a secreted paracrine factor that regulates pigmentation in hair follicle melanocytes. Several dominant mutations cause ectopic expression of agouti, resulting in a phenotype characterized by yellow fur, adult-onset obesity and diabetes, increased linear growth and skeletal mass, and increased susceptibility to tumors. Humans also produce agouti protein, but the highest levels of agouti in humans are found in adipose tissue. To mimic the human agoutiexpression pattern in mice, transgenic mice (aP2-agouti) that express agouti in adipose tissue were generated. The transgenic mice develop a mild form of obesity, and they are sensitized to the action of insulin. We correlated the levels of specific regulators of insulin signaling and adipocyte differentiation with these phenotypic changes in adipose tissue. Signal transducers and activators of transcription (STAT)1, STAT3, and peroxisome proliferator-activated receptor (PPAR)-γ protein levels were elevated in the transgenic mice. Treatment of mature 3T3-L1 adipocytes recapitulated these effects. These data demonstrate that agouti has potent effects on adipose tissue. We hypothesize that agouti increases adiposity and promotes insulin sensitivity by acting directly on adipocytes via PPAR-γ.


Endocrinology ◽  
2012 ◽  
Vol 153 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Shoba Shetty ◽  
Maria A. Ramos-Roman ◽  
You-Ree Cho ◽  
Jonathan Brown ◽  
Jorge Plutzky ◽  
...  

Adiponectin overexpression in mice increases insulin sensitivity independent of adiposity. Here, we combined stable isotope infusion and in vivo measurements of lipid flux with transcriptomic analysis to characterize fatty acid metabolism in transgenic mice that overexpress adiponectin via the aP2-promoter (ADNTg). Compared with controls, fasted ADNTg mice demonstrated a 31% reduction in plasma free fatty acid concentrations (P = 0.008), a doubling of ketones (P = 0.028), and a 68% increase in free fatty acid turnover in plasma (15.1 ± 1.5 vs. 25.3 ± 6.8 mg/kg · min, P = 0.011). ADNTg mice had 2-fold more brown adipose tissue mass, and triglyceride synthesis and turnover were 5-fold greater in this organ (P = 0.046). Epididymal white adipose tissue was slightly reduced, possibly due to the approximately 1.5-fold increase in the expression of genes involved in oxidation (peroxisome proliferator-activated receptor α, peroxisome proliferator-activated receptor-γ coactivator 1α, and uncoupling protein 3). In ADNTg liver, lipogenic gene expression was reduced, but there was an unexpected increase in the expression of retinoid pathway genes (hepatic retinol binding protein 1 and retinoic acid receptor beta and adipose Cyp26A1) and liver retinyl ester content (64% higher, P &lt; 0.02). Combined, these data support a physiological link between adiponectin signaling and increased efficiency of triglyceride synthesis and hydrolysis, a process that can be controlled by retinoids. Interactions between adiponectin and retinoids may underlie adiponectin's effects on intermediary metabolism.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
M. Ebrahimi ◽  
M. A. Rajion ◽  
Y. M. Goh ◽  
A. Q. Sazili ◽  
J. T. Schonewille

This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing highα-linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR)α, PPAR-γ, and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P<0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR-γ(P<0.05) but downregulated the expression of SCD (P<0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).


Endocrinology ◽  
2007 ◽  
Vol 148 (8) ◽  
pp. 3625-3634 ◽  
Author(s):  
W. Timothy Schaiff ◽  
F. F. (Russ) Knapp ◽  
Yaacov Barak ◽  
Tal Biron-Shental ◽  
D. Michael Nelson ◽  
...  

The nuclear receptor peroxisome proliferator activated receptor γ (PPARγ) is essential for murine placental development. We previously showed that activation of PPARγ in primary human trophoblasts enhances the uptake of fatty acids and alters the expression of several proteins associated with fatty acid trafficking. In this study we examined the effect of ligand-activated PPARγ on placental development and transplacental fatty acid transport in wild-type (wt) and PPARγ+/− embryos. We found that exposure of pregnant mice to the PPARγ agonist rosiglitazone for 8 d (embryonic d 10.5–18.5) reduced the weights of wt, but not PPARγ+/− placentas and embryos. Exposure to rosiglitazone reduced the thickness of the spongiotrophoblast layer and the surface area of labyrinthine vasculature, and altered expression of proteins implicated in placental development. The expression of fatty acid transport protein 1 (FATP1), FATP4, adipose differentiation related protein, S3-12, and myocardial lipid droplet protein was enhanced in placentas of rosiglitazone-treated wt embryos, whereas the expression of FATP-2, -3, and -6 was decreased. Additionally, rosiglitazone treatment was associated with enhanced accumulation of the fatty acid analog 15-(p-iodophenyl)-3-(R, S)-methyl pentadecanoic acid in the placenta, but not in the embryos. These results demonstrate that in vivo activation of PPARγ modulates placental morphology and fatty acid accumulation.


2021 ◽  
Vol 22 (16) ◽  
pp. 8969
Author(s):  
Mounia Tahri-Joutey ◽  
Pierre Andreoletti ◽  
Sailesh Surapureddi ◽  
Boubker Nasser ◽  
Mustapha Cherkaoui-Malki ◽  
...  

In mammalian cells, two cellular organelles, mitochondria and peroxisomes, share the ability to degrade fatty acid chains. Although each organelle harbors its own fatty acid β-oxidation pathway, a distinct mitochondrial system feeds the oxidative phosphorylation pathway for ATP synthesis. At the same time, the peroxisomal β-oxidation pathway participates in cellular thermogenesis. A scientific milestone in 1965 helped discover the hepatomegaly effect in rat liver by clofibrate, subsequently identified as a peroxisome proliferator in rodents and an activator of the peroxisomal fatty acid β-oxidation pathway. These peroxisome proliferators were later identified as activating ligands of Peroxisome Proliferator-Activated Receptor α (PPARα), cloned in 1990. The ligand-activated heterodimer PPARα/RXRα recognizes a DNA sequence, called PPRE (Peroxisome Proliferator Response Element), corresponding to two half-consensus hexanucleotide motifs, AGGTCA, separated by one nucleotide. Accordingly, the assembled complex containing PPRE/PPARα/RXRα/ligands/Coregulators controls the expression of the genes involved in liver peroxisomal fatty acid β-oxidation. This review mobilizes a considerable number of findings that discuss miscellaneous axes, covering the detailed expression pattern of PPARα in species and tissues, the lessons from several PPARα KO mouse models and the modulation of PPARα function by dietary micronutrients.


2020 ◽  
Vol 11 ◽  
Author(s):  
Alexander J. Watts ◽  
Samantha M. Logan ◽  
Anna Kübber-Heiss ◽  
Annika Posautz ◽  
Gabrielle Stalder ◽  
...  

Differential levels of n-6 and n-3 essential polyunsaturated fatty acids (PUFAs) are incorporated into the hibernator’s diet in the fall season preceding prolonged, multi-days bouts of torpor, known as hibernation. Peroxisome proliferator-activated receptor (PPAR) transcriptional activators bind lipids and regulate genes involved in fatty acid transport, beta-oxidation, ketogenesis, and insulin sensitivity; essential processes for survival during torpor. Thus, the DNA-binding activity of PPARα, PPARδ, PPARγ, as well as the levels of PPARγ coactivator 1α (PGC-1α) and L-fatty acid binding protein (L-FABP) were investigated in the hibernating garden dormouse (Eliomys quercinus). We found that dormice were hibernating in a similar way regardless of the n-6/n-3 PUFA diets fed to the animals during the fattening phase prior to hibernation. Further, metabolic rates and body mass loss during hibernation did not differ between dietary groups, despite marked differences in fatty acid profiles observed in white adipose tissue prior and at mid-hibernation. Overall, maintenance of PPAR DNA-binding activity was observed during torpor, and across three n-6/n-3 ratios, suggesting alternate mechanisms for the prioritization of lipid catabolism during torpor. Additionally, while no change was seen in L-FABP, significantly altered levels of PGC-1α were observed within the white adipose tissue and likely contributes to enhanced lipid metabolism when the diet favors n-6 PUFAs, i.e., high n-6/n-3 ratio, in both the torpid and euthermic state. Altogether, the maintenance of lipid metabolism during torpor makes it likely that consistent activity or levels of the investigated proteins are in aid of this metabolic profile.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4995
Author(s):  
Su Ji Bae ◽  
Ji Eun Kim ◽  
Yun Ju Choi ◽  
Su Jin Lee ◽  
Jeong Eun Gong ◽  
...  

The efficacy of α-cubebenoate isolated from Schisandra chinensis has been previously studied in three disease areas, namely inflammation, sepsis, and allergy, and its role in other diseases is still being explored. To identify the novel function of α-cubebenoate on lipid metabolism and related inflammatory response, alterations in fat accumulation, lipogenesis, lipolysis, and inflammasome activation were measured in 3T3-L1 preadipocytes and primary adipocytes treated with α-cubebenoate. Lipid accumulation significantly decreased in MDI (3-isobutyl-1-methylxanthine, dexamethasone, and insulin)-stimulated 3T3-L1 adipocytes treated with α-cubebenoate without any significant cytotoxicity. The mRNA levels of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT-enhancer binding protein (C/EBP) α for adipogenesis, as well as adipocyte fatty acid binding protein 2 (aP2) and fatty acid synthetase (FAS) for lipogenesis, were reduced after α-cubebenoate treatment, while cell cycle arrest at G2/M stage was restored in the same group. α-cubebenoate treatment induced glycerol release in primary adipocytes and enhanced expression of lipolytic proteins (HSL, perilipin, and ATGL) expression in MDI-stimulated 3T3-L1 adipocytes. Inflammasome activation and downstream cytokines expression were suppressed with α-cubebenoate treatment, but the expression of insulin receptor signaling factors was remarkably increased by α-cubebenoate treatment in MDI-stimulated 3T3-L1 adipocytes. These results indicate that α-cubebenoate may play a novel role as lipogenesis inhibitor, lipolysis stimulator, and inflammasome suppressor in MDI-stimulated 3T3-L1 adipocytes. Our results provide the possibility that α-cubebenoate can be considered as one of the candidates for obesity management.


2019 ◽  
Vol 22 (6) ◽  
pp. 500-505
Author(s):  
Chiara Valtolina ◽  
Joris H Robben ◽  
Monique E van Wolferen ◽  
Hedwig S Kruitwagen ◽  
Ronald J Corbee ◽  
...  

Objectives The aim of this study was to evaluate if de novo hepatic lipid synthesis contributes to fatty acid overload in the liver of cats with feline hepatic lipidosis (FHL). Methods Lipogenic gene expression of peroxisome proliferator-activated receptor-alpha ( PPAR-α), peroxisome proliferator-activated receptor-gamma ( PPAR-γ), fatty acid synthase ( FASN) and sterol regulatory element-binding factor ( SREBF1) were evaluated using quantitative RT-PCR in liver tissue of six cats with FHL and compared with the liver tissue of eight healthy cats. Results In liver tissue, PPAR-α, PPAR-γ and FASN mRNA expression levels were not significantly different ( P >0.12, P >0.89 and P >0.5, respectively) in the FHL group compared with the control group. SREBF1 gene expression was downregulated around 10-fold in the FHL group vs the control group ( P = 0.039). Conclusions and relevance The downregulation of SREBF1 in the liver tissue of cats with FHL does not support the hypothesis that de novo lipogenesis in the liver is an important pathway of fatty acid accumulation in FHL.


Sign in / Sign up

Export Citation Format

Share Document