scholarly journals Aryl hydrocarbon receptor and NF-E2-related factor 2 are key regulators of human MRP4 expression

2010 ◽  
Vol 299 (1) ◽  
pp. G126-G135 ◽  
Author(s):  
Shuhua Xu ◽  
Jittima Weerachayaphorn ◽  
Shi-Ying Cai ◽  
Carol J. Soroka ◽  
James L. Boyer

Multidrug resistance protein 4 (MRP4; ABCC4) is an ATP binding cassette transporter that facilitates the excretion of bile salt conjugates and other conjugated steroids in hepatocytes and renal proximal tubule epithelium. MRP4/Mrp4 undergoes adaptive upregulation in response to oxidative and cholestatic liver injury in human and animal models of cholestasis. However, the molecular mechanism of this regulation remains to be determined. The aryl hydrocarbon receptor (AhR) and NF-E2-related factor 2 (Nrf2) play important roles in protecting cells from oxidative stress. Here we examine the role of these two nuclear factors in the regulation of the expression of human MRP4. HepG2 cells and human hepatocytes were treated with the AhR and Nrf2 activators, 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD), 3-methylcholanthrene (3-MC), or oltipraz and other nuclear receptor agonists. TCDD, 3-MC, and oltipraz significantly increased MRP4 expression at mRNA and protein levels. Computer program analysis revealed three Xenobiotic response element (XRE) and one Maf response element sites within the first 500 bp of the MRP4 proximal promoter. Luciferase reporter assay detected strong promoter activity (53-fold higher than vector control) in this region. TCDD and 3-MC also induced promoter activity in the reporter assays. Mutation of any of these XRE sites significantly decreased MRP4 promoter activity in reporter assays, although XRE2 demonstrated the strongest effects on both basal and TCDD-inducible activity. EMSA and chromatin immunoprecipitation assays further confirmed that both AhR and Nrf2 bind to the proximal promoter of MRP4. Our findings indicate that AhR and Nrf2 play important roles in regulating MRP4 expression and suggest that agents that activate their activity may be of therapeutic benefit for cholestasis.

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1189
Author(s):  
Jangsoon Kim ◽  
See-Hyoung Park ◽  
Seyoung Yang ◽  
Sae Woong Oh ◽  
Kitae Kwon ◽  
...  

Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon formed during the incomplete combustion of organic matter, has harmful effects. Therefore, much research is ongoing to develop agents that can mitigate the effects of B[a]P. The aim of this study was to examine the effect of maclurin, one component of the branches of Morus alba L., on the B[a]P-induced effects in HaCaT cells, a human keratinocyte cell line. Maclurin treatment inhibited aryl hydrocarbon receptor (AHR) signaling as evidenced by reduced xenobiotic response element (XRE) reporter activity, decreased expression of cytochrome P450 1A1 (CYP1A1), and reduced nuclear translocation of AHR. The B[a]P-induced dissociation of AHR from AHR-interacting protein (AIP) was suppressed by maclurin. Maclurin also inhibited the production of intracellular reactive oxygen species (ROS) induced by B[a]P. In addition, the antioxidant property of maclurin itself was demonstrated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Furthermore, maclurin activated antioxidant response element (ARE) signaling through enhancement of ARE luciferase reporter activity and the expression of ARE-dependent genes including nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). Nrf2 activation and its nuclear translocation were promoted by maclurin through p38 MAPK activation. These data indicate that maclurin had antagonistic activity against B[a]P effects through activation of Nrf2-mediated signaling and inhibition of AHR signaling and, suggesting its potential in protecting from harmful B[a]P-containing pollutants.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 463 ◽  
Author(s):  
Wei-Min Chung ◽  
Yen-Ping Ho ◽  
Wei-Chun Chang ◽  
Yuan-Chang Dai ◽  
Lumin Chen ◽  
...  

Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies and presents chemoresistance after chemotherapy treatment. Androgen receptor (AR) has been known to participate in proliferation. Yet the mechanisms of the resistance of this drug and its linkage to the AR remains unclear. Methods: To elucidate AR-related paclitaxel sensitivity, co-IP, luciferase reporter assay and ChIP assay were performed to identify that AR direct-regulated ABCG2 expression under paclitaxel treatment. IHC staining by AR antibody presented higher AR expression in serous-type patients than other types. AR degradation enhancer (ASC-J9) was used to examine paclitaxel-associated and paclitaxel-resistant cytotoxicity in vitro and in vivo. Results: We found AR/aryl hydrocarbon receptor (AhR)-mediates ABCG2 expression and leads to a change in paclitaxel cytotoxicity/sensitivity in EOC serous subtype cell lines. Molecular mechanism study showed that paclitaxel activated AR transactivity and bound to alternative ARE in the ABCG2 proximal promoter region. To identify AR as a potential therapeutic target, the ASC-J9 was used to re-sensitize paclitaxel-resistant EOC tumors upon paclitaxel treatment in vitro and in vivo. Conclusion: The results demonstrated that activation of AR transactivity beyond the androgen-associated biological effect. This novel AR mechanism explains that degradation of AR is the most effective therapeutic strategy for treating AR-positive EOC serous subtype.


2019 ◽  
Vol 20 (12) ◽  
pp. 3087 ◽  
Author(s):  
Yabo Zhao ◽  
Yali Fu ◽  
Yingfei Sun ◽  
Mengyun Zou ◽  
Xiuli Peng

MicroRNAs (miRNAs) have been determined to be important regulators for pathogenic microorganism infection. However, it is largely unclear how miRNAs are triggered during pathogen infection. We previously reported that the up-regulation of gga-miR-451 negatively regulates the Mycoplasma gallisepticum (MG)-induced production of inflammatory cytokines via targeting tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein zeta (YWHAZ). The aim of this study was to investigate the mechanism regulating gga-miR-451 in MG infection in chickens. Analysis of gga-miR-451 precursor, pri-miR-451, and pre-miR-451 indicated that the regulation occurred transcriptionally. We also identified the transcriptional regulatory region of gga-miR-451 that contained consensus-binding motif for aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (Arnt) complex, which is known as the transcription factor that regulates gene expression. Luciferase reporter assays combined with chromatin immunoprecipitation (ChIP) demonstrated that AhR:Arnt bound directly to the promoter elements of gga-miR-451, which were responsible for gga-miR-451 transcription in the context of MG infection. Furthermore, upregulation of AhR:Arnt significantly induced gga-miR-451 and inhibited YWHAZ expression, suggesting that AhR:Arnt may play an anti-inflammatory role in MG infection. This discovery suggests that induced gga-miR-451 expression is modulated by AhR:Arnt in response to MG infection.


2020 ◽  
Vol 9 (3) ◽  
pp. 271-282
Author(s):  
Noriko Sanada ◽  
Yuka Gotoh-Kinoshita ◽  
Naoya Yamashita ◽  
Ryoichi Kizu

Abstract Aryl hydrocarbon receptor (AhR) and androgen receptor (AR) are ligand-activated transcription factors with profound cross-talk between their signal transduction pathways. Previous studies have shown that AhR agonists activate the transcription of AR-regulated genes in an androgen-independent manner; however, the underlying mechanism remains unclear. To decipher this mechanism, we evaluated the effects of 3-methylcholanthrene (3MC), a potent AhR agonist, on the transcription of AR-regulated genes in three AR-expressing cell lines. 3MC induced the expression of not only three representative AR-regulated chromosomal genes but also the exogenous AR-responsive luciferase reporter gene. No significant difference in the 3MC-induced luciferase activity was detected in the presence of SKF-525A, a non-specific inhibitor of CYP enzymes. The androgenic effects of 3MC were diminished by AhR and AR knockdown. Following 3MC treatment, the amount of nuclear AhR and AR increased synchronously. Co-immunoprecipitation revealed that AhR and AR formed a complex in the nucleus of cells treated with 3MC. AR was recruited to the proximal promoter and distal enhancer regions of the PSA gene upon the addition of 3MC. We propose that AhR activated by 3MC forms a complex with unliganded AR which translocates from the cytoplasm to the nucleus. Nuclear AR now binds the transcriptional regulatory region of AR-regulated genes and activates the transcription.


2022 ◽  
pp. 026988112110558
Author(s):  
K Fehsel ◽  
K Schwanke ◽  
BA Kappel ◽  
E Fahimi ◽  
E Meisenzahl-Lechner ◽  
...  

Background: The superior therapeutic benefit of clozapine is often associated with metabolic disruptions as obesity, insulin resistance, tachycardia, higher blood pressure, and even hypertension. Aims: These adverse vascular/ metabolic events under clozapine are similar to those caused by polycyclic aromatic hydrocarbons (PAHs), and clozapine shows structural similarity to well-known ligands of the aryl hydrocarbon receptor (AhR). Therefore, we speculated that the side effects caused by clozapine might rely on AhR signaling. Methods: We examined clozapine-induced AhR activation by luciferase reporter assays in hepatoma HepG2 cells and we proved upregulation of the prototypical AhR target gene Cyp1A1 by realtime-PCR (RT-PCR) analysis and enzyme activity. Next we studied the physiological role of AhR in clozapine’s effects on human preadipocyte differentiation and on vasodilatation by myography in wild-type and AhR-/- mice. Results: In contrast to other antipsychotic drugs (APDs), clozapine triggered AhR activation and Cyp1A1 expression in HepG2 cells and adipocytes. Clozapine induced adipogenesis via AhR signaling. After PGF2α-induced constriction of mouse aortic rings, clozapine strongly reduced the maximal vasorelaxation under acetylcholine in rings from wild-type mice, but only slightly in rings from AhR-/- mice. The reduction was also prevented by pretreatment with the AhR antagonist CH-223191. Conclusion: Identification of clozapine as a ligand for the AhR opens new perspectives to explain common clozapine therapy-associated adverse effects at the molecular level.


1998 ◽  
Vol 18 (2) ◽  
pp. 978-988 ◽  
Author(s):  
Brian K. Meyer ◽  
Marilyn G. Pray-Grant ◽  
John P. Vanden Heuvel ◽  
Gary H. Perdew

ABSTRACT Prior to ligand activation, the unactivated aryl hydrocarbon receptor (AhR) exists in a heterotetrameric 9S core complex consisting of the AhR ligand-binding subunit, a dimer of hsp90, and an unknown subunit. Here we report the purification of an ∼38-kDa protein (p38) from COS-1 cell cytosol that is a member of this complex by coprecipitation with a FLAG-tagged AhR. Internal amino acid sequence information was obtained, and p38 was identified as the hepatitis B virus X-associated protein 2 (XAP2). The simian ortholog of XAP2 was cloned from a COS-1 cDNA library; it codes for a 330-amino-acid protein containing regions of homology to the immunophilins FKBP12 and FKBP52. A tetratricopeptide repeat (TPR) domain in the carboxy-terminal region of XAP2 was similar to the third and fourth TPR domains of human FKBP52 and the Saccharomyces cerevisiae transcriptional modulator SSN6, respectively. Polyclonal antibodies raised against XAP2 recognized p38 in the unliganded AhR complex in COS-1 and Hepa 1c1c7 cells. It was ubiquitously expressed in murine tissues at the protein and mRNA levels. It was not required for the assembly of an AhR-hsp90 complex in vitro. Additionally, XAP2 did not directly associate with hsp90 upon in vitro translation, but was present in a 9S form when cotranslated in vitro with murine AhR. XAP2 enhanced the ability of endogenous murine and human AhR complexes to activate a dioxin-responsive element–luciferase reporter twofold, following transient expression of XAP2 in Hepa 1c1c7 and HeLa cells.


2020 ◽  
Vol 177 (1) ◽  
pp. 188-201
Author(s):  
Sarah J Phelan-Dickinson ◽  
Brian C Palmer ◽  
Yue Chen ◽  
Lisa A DeLouise

Abstract Ultraviolet radiation (UVR) is a consistent part of the environment that has both beneficial and harmful effects on human health. UVR filters in the form of commercial sunscreens have been widely used to reduce the negative health effects of UVR exposure. Despite their benefit, literature suggests that some filters can penetrate skin and have off-target biological effects. We noted that many organic filters are hydrophobic and contain aromatic rings, making them potential modulators of Aryl hydrocarbon Receptor (AhR) signaling. We hypothesized that some filters may be able to act as agonists or antagonists on the AhR. Using a luciferase reporter cell line, we observed that the UVR filter octinoxate potentiated the ability of the known AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ), to activate the AhR. Cotreatments of keratinocytes with octinoxate and FICZ lead to increased levels of cytochrome P4501A1 (CYP1A1) and P4501B1 (CYP1B1) mRNA transcripts, in an AhR-dependent fashion. Mechanistic studies revealed that octinoxate is an inhibitor of CYP1A1 and CYP1B1, with IC50 values at approximately 1 µM and 586 nM, respectively. In vivo topical application of octinoxate and FICZ also elevated CYP1A1 and CYP1B1 mRNA levels in mouse skin. Our results show that octinoxate is able to indirectly modulate AhR signaling by inhibiting CYP1A1 and CYP1B1 enzyme function, which may have important downstream consequences for the metabolism of various compounds and skin integrity. It is important to continue studying the off-target effects of octinoxate and other UVR filters, because they are used on skin on a daily basis world-wide.


Sign in / Sign up

Export Citation Format

Share Document