Characteristics of "on" and "off" contractions in esophageal circular muscle in vitro

1984 ◽  
Vol 246 (2) ◽  
pp. G137-G144 ◽  
Author(s):  
J. Crist ◽  
J. S. Gidda ◽  
R. K. Goyal

The prevalence, amplitude, and latency periods of "on," "off," and "intermediate" contractions in response to transmural stimulation were recorded in transverse rings of circular muscle from different levels of the opossum esophagus. Ten-second train stimuli consistently produced off contractions. On contractions were not seen at lower stimulus frequencies (2 and 5 Hz); however, their incidence approached 90% at higher frequencies (40 Hz). Intermediate contractions occurred only at stimulus frequencies of 10 Hz or greater and were less frequent than on contractions. In general, the on and intermediate contractions had significantly lower amplitudes than the off contraction. The on contraction occurred with a latency period from initiation of the stimulus. This latency was greater in the more distal sites and decreased with increasing stimulus frequency. The off contractions occurred with a latency period from termination of the stimulus. This latency was not dependent on either stimulus frequency or site along the esophagus. Atropine antagonized the on and intermediate contractions but had no such effect on the off contraction. Tetrodotoxin abolished the on, off, and intermediate contractions. This study suggests that an intramural mechanism exists that upon stimulation produces atropine-sensitive on contractions. These contractions may play a role in esophageal peristalsis.

Author(s):  
M. Kraemer ◽  
J. Foucrier ◽  
J. Vassy ◽  
M.T. Chalumeau

Some authors using immunofluorescent techniques had already suggested that some hepatocytes are able to synthetize several plasma proteins. In vitro studies on normal cells or on cells issued of murine hepatomas raise the same conclusion. These works could be indications of an hepatocyte functionnal non-specialization, meanwhile the authors never give direct topographic proofs suitable with this hypothesis.The use of immunoenzymatic techniques after obtention of monospecific antisera had seemed to us useful to bring forward a better knowledge of this problem. We have studied three carrier proteins (transferrin = Tf, hemopexin = Hx, albumin = Alb) operating at different levels in iron metabolism by demonstrating and localizing the adult rat hepatocytes involved in their synthesis.Immunological, histological and ultrastructural methods have been described in a previous work.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 55-56
Author(s):  
Noheli Gutierrez ◽  
Jamie A Boyd

Abstract A study was conducted to evaluate effects of increasing concentration of food grade glycerol on rumen environment and nutrient digestibility. Three ruminally cannulated Jersey steers were used in this study. The study was conducted from March to May 2019. Experimental design was a 3x3 Latin square with a 2wk adjustment period followed by a 1wk collection period. Diet was coastal bermudagrass hay based. Different forage types were introduced in the incubation process to evaluate digestibility. Glycerol was administered once a day at 0, 15, or 20% of DMI (dry matter intake). dNDF (digestible NDF) and dDM (digestible dry matter) was determined using an ANKOM Daisy II incubator inoculated with 200g fresh rumen fluid and incubated for 12, 24, 48 and 72 h at 39°C. Each vessel contained ground forage samples in filter bags in triplicate. After incubation, filter bags were rinsed with cold water and dried for 24h in a 55°C forced air oven. Data were analyzed using the Proc MIXED procedure of SAS version 9.4. There was no difference dNDF in effect of different levels of glycerol between forage types by diet. But a numerical tendency was observed that dNDF was decreased at 20% inclusion rates in comparison to 0 and 15% inclusion of glycerol in the diet. Neither steer nor run was significantly different in the study. However as expected digestibility over time was significantly different (P < 0.001). A significant increase was observed in DMI with the increased levels of glycerol in the diet (P = 0.003), both the 15% and 20% levels of glycerol increased in DMI in comparison to the control (0%). It appears based on these study results that digestibility may be inhibited, as levels of dietary glycerol increase in the diet and more work needs to be done to find the optimal level of glycerol supplementation.


2021 ◽  
pp. 088532822110038
Author(s):  
Mohammad Yousef Memar ◽  
Mina Yekani ◽  
Hadi Ghanbari ◽  
Edris Nabizadeh ◽  
Sepideh Zununi Vahed ◽  
...  

The aims of the present study were the determination of antimicrobial and antibiofilm effects of meropenem-loaded mesoporous silica nanoparticles (MSNs) on carbapenem resistant Pseudomonas aeruginosa ( P. aeruginosa) and cytotoxicity properties in vitro. The meropenem-loaded MSNs had shown antibacterial and biofilm inhibitory activities on all isolates at different levels lower than MICs and BICs of meropenem. The viability of HC-04 cells treated with serial concentrations as MICs and BICs of meropenem-loaded MSNs was 92–100%. According to the obtained results, meropenem-loaded MSNs display the significant antibacterial and antibiofilm effects against carbapenem resistant and biofilm forming P. aeruginosa and low cell toxicity in vitro. Then, the prepared system can be an appropriate option for the delivery of carbapenem for further evaluation in vivo assays.


2016 ◽  
Vol 52 (1) ◽  
pp. 113-123
Author(s):  
Raju Senthil Kumar ◽  
Balasubramanian Rajkapoor ◽  
Perumal Perumal ◽  
Sekar Vinoth Kumar ◽  
Arunachalam Suba Geetha

ABSTRACT Indigofera linnaei Ali. (Tamil Name: Cheppu Nerinjil) belongs to the family Fabaceae, used for the treatment of various ailments in the traditional system of medicine. In the present study, the beneficial effects of methanol extract of whole plant of I. linnaei (MEIL) were evaluated on inflammation and nociception responses in rodent models. In vitro nitric oxide (NO), lipoxygenase (LOX) and cyclooxygense (COX) inhibitory activities were also performed to understand the mode of action. MEIL at the dose of 200 & 400 mg/kg, p.o. significantly inhibited carrageenan induced rat paw volume and reduced the weight of granuloma in cotton pellet granuloma model. The results obtained were comparable with the standard drug aceclofenac. The anti-nociceptive effect of MEIL in mice was evaluated in hot plate and acetic acid induced writhing model. The plant extract significantly reduced the number of writhes and the analgesic effect was higher than that of the standard drug aspirin. However, the extract fails to increase the latency period in hot plate method suggesting that the extract produce nociception by peripheral activity. The extract produced inhibitory effect on NO, LOX and COX in concentration dependent manner. The extract exhibited pronounced and selective COX-2 inhibition. Altogether, these results suggested that the methanol extract of Indigofera linnaei could be considered as a potential anti-inflammatory and analgesic agent.


2014 ◽  
Vol 8 (1) ◽  
Author(s):  
Miguel Amaral ◽  
Francisco do Vale ◽  
João Silva ◽  
Francisco Caramelo ◽  
Germano Veiga

The aim of the present work was to evaluate the possibility of using zinc-air batteries in intraoral medical devices. We analyzed the electrical behavior of zinc-air batteries when submitted to different levels of temperature, humidity, and limited quantities of air. The experimental setup was divided in three different parts. Firstly, a set of batteries were tested within a climatic chamber and subjected to discharging tests similar to those recommended by the manufacturer. The climatic chamber allowed an accurate variation of humidity and temperature. Secondly, the batteries were placed in a small prototype of intraoral medical device and tested in the absence of air. Lastly, we used a robot arm to repeatedly immerse the prototype in artificial saliva. The results obtained demonstrated the viability of zinc-air batteries as a power solution for intraoral medical devices, as they tolerate high levels of humidity and are capable of working with limited quantities of air. In addition, this kind of battery presents a volume to electrical capacity ratio more than three times higher than lithium batteries, which may open important improvement for powered medical devices.


1988 ◽  
Vol 22 (4) ◽  
pp. 405 ◽  
Author(s):  
L Gascoigne ◽  
B Allen ◽  
MC Thorndyke ◽  
PJR Bevis
Keyword(s):  

2006 ◽  
Vol 290 (6) ◽  
pp. G1307-G1317 ◽  
Author(s):  
Ling Cheng ◽  
Weibiao Cao ◽  
Claudio Fiocchi ◽  
Jose Behar ◽  
Piero Biancani ◽  
...  

Platelet-activating factor (PAF) and interleukin-6 (IL-6) are produced in the esophagus in response to HCl and affect ACh release, causing changes in esophageal motor function similar to esophagitis (Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, and Harnett KM. Am J Physiol Gastrointest Liver Physiol 289: G418–G428, 2005). We therefore examined HCl-activated mechanisms for production of PAF and IL-6 in cat esophageal mucosa and circular muscle. A segment of normal mucosa was tied at both ends, forming a mucosal sac (Cheng L, Cao W, Fiocchi C, Behar J, Biancani P, and Harnett KM. Am J Physiol Gastrointest Liver Physiol 289: G860–G869, 2005) that was filled with acidic Krebs buffer (pH 5.8) or normal Krebs buffer (pH 7.0) as control and kept in oxygenated Krebs buffer for 3 h. The supernatant of the acidic sac (MS-HCl) abolished contraction of normal muscle strips in response to electric field stimulation. The inhibition was reversed by the PAF antagonist CV3988 and by IL-6 antibodies. PAF and IL-6 levels in MS-HCl and mucosa were significantly elevated over control. IL-6 levels in mucosa and supernatant were reduced by CV3988, suggesting that formation of IL-6 depends on PAF. PAF-receptor mRNA levels were not detected by RT-PCR in normal mucosa, but were significantly elevated after exposure to HCl, indicating that HCl causes production of PAF and expression of PAF receptors in esophageal mucosa and that PAF causes production of IL-6. PAF and IL-6, produced in the mucosa, are released to affect the circular muscle layer. In the circular muscle, PAF causes production of additional IL-6 that activates NADPH oxidase to induce production of H2O2. H2O2 causes formation of IL-1β that may induce production of PAF in the muscle, possibly closing a self-sustaining cycle of production of inflammatory mediators.


2020 ◽  
Vol 16 (11) ◽  
pp. 1623-1632
Author(s):  
Abbas Moghanizadeh ◽  
Fakhreddin Ashrafizadeh ◽  
Jaleh Varshousaz ◽  
Mahshid Kharaziha

This study aims to evaluate the efficiency of a novel in vitro technique in clot capturing and dissolving them by applying magnetic force on magnetic nanoparticles (MNP) carrying thrombolytic agents. It is a quick and simple method to protect patients from a life-threatening pulmonary embolism in an emergency to provide time for the medical team. To analyze the in vitro efficiency of nano-magnetic capturing and dissolving of clots (NCDC), different levels of process parameter including strength magnetic field (0.1, 0.2 and 0.3 T) and fluid flow rate (2.5, 5 and 7 l/min) are exposed to different blood clots sizes from 5 × 10 to 20 × 10 mm2 (length × diameter), in an in vitro flow model. The results show that by increasing the parameters to their maximum values, it is possible to immobilize 100% of the clots and dissolve around 61.4% of clots weight. In addition, the clot-dissolving is directly proportional to the magnetic field strength. NCDC is an efficient technique in immobilizing and dissolving the clots and its efficiency depends on process parameters especially the magnetic field.


2003 ◽  
Vol 285 (6) ◽  
pp. G1129-G1138 ◽  
Author(s):  
Steven M. Miller ◽  
J. H. Szurszewski

The relationship between longitudinal and circular muscle tension in the mouse colon and mechanosensory excitatory synaptic input to neurons in the superior mesenteric ganglion (SMG) was investigated in vitro. Electrical activity was recorded intracellularly from SMG neurons, and muscle tension was simultaneously monitored in the longitudinal, circumferential, or both axes. Colonic intraluminal pressure and volume changes were also monitored simultaneously with muscle tension changes. The results showed that the frequency of fast excitatory postsynaptic potentials (fEPSPs) in SMG neurons increased when colonic muscle tension decreased, when the colon relaxed and refilled with fluid after contraction, and during receptive relaxation preceding spontaneous colonic contractions. In contrast, fEPSP frequency decreased when colonic muscle tension increased during spontaneous colonic contraction and emptying. Manual stretch of the colon wall to 10-15% beyond resting length in the circumferential axis of flat sheet preparations increased fEPSP frequency in SMG neurons, but stretch in the longitudinal axis to 15% beyond resting length in the same preparations did not. There was no increase in synaptic input when tubular colon segments were stretched in their long axes up to 20% beyond their resting length. The circumferential stretch-sensitive increase in the frequency of synaptic input to SMG neurons persisted when the colonic muscles were relaxed pharmacologically by nifedipine (2 μM) or nicardipine (3 μM). These results suggest that colonic mechanosensory afferent nerves projecting to the SMG function as length or stretch detectors in parallel to the circular muscle layer.


1978 ◽  
Vol 235 (4) ◽  
pp. E422 ◽  
Author(s):  
L A Bruce ◽  
F M Behsudi ◽  
I E Danhof

Male Sprague-Dawley rats were pretreated subcutaneously with either progesterone (3 mg/kg per day) in a vehicle or a vehicle only for 3 days. Antral and gastroduodenal junctional tissues (GJT) were excised from both groups of animals and prepared for in vitro mechanical measurements. Responses from the circular muscle axis of these tissues were recorded with strain gauge transducers over a 30-min period. Chemical stimulation of the tissue was achieved with a muscarinic agonist, bethanechol chloride. Log-dose response curves suggested that untreated antral tissue generated stronger contractile activity than untreated GJT on an equal weight basis at bethanechol dose levels of 6.4 X 10(-6) M to 1 X 10(-4) M (P less than 0.005). Antral tissue and GJT contractile activity from the progesterone pretreated animals was significantly reduced (P less than 0.01) compared to the corresponding tissues from untreated animals at bethanechol dose levels of 6.4 X 10(-6) M and 1.28 X 10(-5) M. Progesterone pretreatment appeared to have little effect on the contractile frequency of either tissue. These results suggest possible progesteronic influences on contractile force in gastrointestinal smooth muscle.


Sign in / Sign up

Export Citation Format

Share Document