scholarly journals Beneficial effects of methanolic extract of Indigofera linnaei Ali. on the inflammatory and nociceptive responses in rodent models

2016 ◽  
Vol 52 (1) ◽  
pp. 113-123
Author(s):  
Raju Senthil Kumar ◽  
Balasubramanian Rajkapoor ◽  
Perumal Perumal ◽  
Sekar Vinoth Kumar ◽  
Arunachalam Suba Geetha

ABSTRACT Indigofera linnaei Ali. (Tamil Name: Cheppu Nerinjil) belongs to the family Fabaceae, used for the treatment of various ailments in the traditional system of medicine. In the present study, the beneficial effects of methanol extract of whole plant of I. linnaei (MEIL) were evaluated on inflammation and nociception responses in rodent models. In vitro nitric oxide (NO), lipoxygenase (LOX) and cyclooxygense (COX) inhibitory activities were also performed to understand the mode of action. MEIL at the dose of 200 & 400 mg/kg, p.o. significantly inhibited carrageenan induced rat paw volume and reduced the weight of granuloma in cotton pellet granuloma model. The results obtained were comparable with the standard drug aceclofenac. The anti-nociceptive effect of MEIL in mice was evaluated in hot plate and acetic acid induced writhing model. The plant extract significantly reduced the number of writhes and the analgesic effect was higher than that of the standard drug aspirin. However, the extract fails to increase the latency period in hot plate method suggesting that the extract produce nociception by peripheral activity. The extract produced inhibitory effect on NO, LOX and COX in concentration dependent manner. The extract exhibited pronounced and selective COX-2 inhibition. Altogether, these results suggested that the methanol extract of Indigofera linnaei could be considered as a potential anti-inflammatory and analgesic agent.

2021 ◽  
Vol 11 (3) ◽  
pp. 057-065
Author(s):  
Babafemi Tosin Ogunbiyi ◽  
Oluwaseyi Adegoke Adetunji ◽  
Olubunmi Esther Ogunbiyi ◽  
Gogonte Hezekiah Amah ◽  
Modupe Olusola Adetayo ◽  
...  

Vitellaria paraodoxa (shea tree) is the source of shea seed from which the well-known shea butter is derived. The methanol extract of shea seed was evaluated for its anti-inflammatory and antioxidant activities using diclofenac sodium and ascorbic acid as standard respectively in in vitro methods. The anti-inflammatory activity was determined by inhibition of protein denaturation of bovine serum albumin (BSA) and erythrocyte membrane stabilization of human red blood cell. The antioxidant activity was evaluated using 1, 1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) assays. The results showed that methanol extract of V. paradoxa seed at different concentration protects the heat induced protein denaturation with the maximum percentage inhibition of 27% (IC50=303.0 µg/mL, p<0.05) at 500µg/mL compared to the standard drug which induced maximum inhibition of 45% (IC50=261.4 µg/mL, p<0.05) at 500 µg/mL and the control. The percentage inhibition of the methanol extract and standard drug in erythrocyte stabilization assay increased in a concentration dependent manner with maximum inhibitory activity of 96.9% (IC50=31.47 µg/mL, p<0.05) and 95% (IC50=33.89 µg/mL, p<0.05) at 2000 µg/ml respectively, which indicates that methanol extract stabilized erythrocyte membrane against hypotonic induced hemolysis in a blood sample better than the standard drug. The maximum percentage inhibition of methanol extract and standard drug in DPPH assay were found to be at 97% (IC50=8.95 µg/mL, p<0.05) and 98% (IC50=6.72 µg/mL, p<0.05) respectively at 100 µg/ml. The absorbance of the reductive capacities in FRAP assay indicates that the methanol extract has higher reducing potency in a concentration dependent manner. The methanol extract exhibited total antioxidant capacity of 0.25 ± 0.04 µg/(AAE/g) when compared to the standard drug 0.87 ± 0.03 µg/(AAE/g) at highest concentration of 100 µg/ml. For TBARS assay, low absorbance value indicate a high level of inhibition of lipid peroxidation. The maximum percentage inhibition of methanol extract was 97.5 % (IC50=51.79 µg/mL, p<0.05) and ascorbic acid was 99% (IC50=52.30 µg/mL, p<0.05) at concentration of 20 µg/ml. The assay indicates that the methanol extract has higher inhibiting potency in a reverse concentration dependent manner. In conclusion, V. paradoxa seed may possess strong anti-inflammatory and antioxidant activities which could constitute a potential source for development of new therapy.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jassem G. Mahdi ◽  
Eamon J. Mahdi ◽  
Amal Al-Hazzaa ◽  
Chris J. Pepper

There has been a growing interest in the beneficial effects of simple phenolic acids and their ability to exhibit various biological activities. The aim of this study was to assess in vitro biological activities of 2-, 3-, and 4-hydroxybenzoate lithium (HBLi) complexes on HT-1080 human fibrosarcoma cells by methods of using a metabolic activity assay, immunochemical and morphological techniques. Results showed that HBLi complexes exert their cytotoxic activities in a concentration- and chemical structure-dependent manner in the following order: 4-HBLi > 3-HBLi > 2-HBLi. Flow cytometry displayed evidence of apoptosis induced by 3-HBLi (21.8%) and 4-HBLi (33.2%). These results were verified by SEM, which revealed the formation of apoptotic bodies. In addition, these 3-HBLi and 4-HBLi caused an increase in HT-1080 cell cycle arrest in G0/G1 phase when compared to the controls (25% and 30.6%, resp.) when cells were treated with 6 mM for 24 hours. Immunochemical studies related to the molecular mechanism of apoptosis indicated that HBLi complexes downregulated the expression of Bcl-2 and upregulated Bax, p53, and caspases-3 in a concentration-dependent manner. HBLi complexes lowered Bcl-2/Bax ratios and induced the expression of p53 and caspase-3. These results suggest that HBLi complexes may exert their apoptotic effects through mitochondrial-mediated, caspase-dependent, apoptotic mechanisms.


2001 ◽  
Vol 29 (01) ◽  
pp. 111-118 ◽  
Author(s):  
Mohammad Alhakam Tulimat ◽  
Tadashi Ishiguchi ◽  
Susumu Kurosawa ◽  
Takashi Nakamura ◽  
Toku Takahashi

Dai-Kenchu-To (DKT) is a herbal medicine and is currently used as the treatment of paralytic ileus in Japan. We investigated the mechanism of beneficial effects of DKT in vitro. DKT-extract powder (DKT-EP; 30–300 μg/ml) caused a significant inhibition on carbachol (CCH; 10-6)-induced contraction in a concentration dependent manner of the rat distal colon. DKT-EP (100 μg/ml) consists of 20 μg/ml of Zanthoxylum Fruit, 30 μg/ml of Ginseng Root and 50 μg/ml of Ginger Rhizome. Although each of them had no effect on CCH-induced muscle contraction, the combination of three ingredients caused a significant inhibition on CCH-induced contraction.


2019 ◽  
Vol 8 (4) ◽  
pp. 281-286 ◽  
Author(s):  
Hassan Sadraei ◽  
Seyed Mostapha Ghanadian ◽  
Gholamreza Asghari ◽  
Aminreza Gavahian

Introduction: Dracocephalum kotschyi is a native Iranian plant with antispasmodic activities on smooth muscles such as ileum and uterus. However, so far antispasmodic effect of D. kotschyi on tracheal smooth muscle has not been reported. Therefore, the objective of this research was to investigate antispasmodic activity of D. kotschyi extract and two of its components luteolin and apigenin on rabbit tracheal contraction in vitro. Methods: Rabbits were euthanized by carbon dioxide and the trachea was dissected and immersed in a Tyrode’s solution. Tracheal rings were prepared and mounted vertically in an organ bath at 37°C and gassed continuously with O2. The tracheal ring preparations were contracted with acetylcholine (ACh) and KCl. The isotonic tension was recorded before and after addition of aminophylline, apigenin, luteolin or flavonoids rich extract of D. kotschyi. Flavonoids rich extract were prepared from D. kotschyi using solvent-solvent fractionation technique. Results: Standard drug aminophylline, prevented tracheal ring preparation contracted with ACh. Cumulative addition of aminophylline also attenuated tonic contraction induced by KCl on tracheal smooth muscle. D. kotschyi extract at concentration ranges of 32-512 μg/mL in a concentration dependent manner inhibited KCl and ACh induced tracheal contraction. Apigenin and luteolin (range 16–512 μg/mL) relaxed KCl and ACh-induced contraction of tracheal smooth muscle in vitro in a concentration-dependent manner. Conclusion: This study demonstrated that D. kotschyi extract is a relaxant of tracheal smooth muscle. The relaxant effect of D. kotschyi extract could be due to its flavonoids component such as apigenin and luteolin.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2020 ◽  
Vol 16 (3) ◽  
pp. 358-362
Author(s):  
Renan S. Teixeira ◽  
Paulo H.D. Carvalho ◽  
Jair A.K. Aguiar ◽  
Valquíria P. Medeiros ◽  
Ademar A. Da Silva Filho ◽  
...  

Background: Arctigenin is a lignan found in Arctium lappa L. (Asteraceae) that displays anti-inflammatory activities. Previous studies showed that the crude extract of A. Lappa has antitumor activity in human liver carcinoma, lung and stomach cancer cells. The aim of this study was to obtain arctigenin from A. lappa L., as well as to evaluate its antiproliferative effects in cells of liver carcinoma (HepG2) and fibroblasts (NIH/3T3). Methods: Arctigenin was obtained from the hydrolysis of arctiin, which was isolated from the crude extract of A. lappa. The effects of arctigenin and arctiin on HepG2 cell viability and cell adhesion were analyzed by MTT method. Adhesion assay was also carried out to evaluate the antitumor activity. Results: Our results showed that the analytical process to obtain arctigenin was fast and easy. In vitro experiments showed that arctigenin (107-269 μM) decreased HepG2 cells viability and did not cause cytotoxicity on NIH/3T3 cells. Arctigenin (27-269 μM) demonstrated anti-adhesion in HepG2 cells in a concentration-dependent manner, when compared with control. Conclusion: These results suggest a promising pharmacological activity for arctigenin as an antiproliferative compound.


2021 ◽  
Vol 22 (13) ◽  
pp. 6785
Author(s):  
Valeria Sogos ◽  
Paola Caria ◽  
Clara Porcedda ◽  
Rafaela Mostallino ◽  
Franca Piras ◽  
...  

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohammad Sarowar Uddin ◽  
Md. Shalahuddin Millat ◽  
Mohammad Safiqul Islam ◽  
Md. Saddam Hussain ◽  
Md. Giash Uddin ◽  
...  

Abstract Background Brassica nigra is a plant of Brassicaceae family, which possesses numerous medicinal values. Our present study is intended to assess the potential in vitro thrombolytic, anthelminthic, cytotoxic and in vivo anxiolytic properties of MCE of B. nigra flowers. MCE was fractioned for separating the compound on the basis of polarity by using chloroform, n-hexane and ethyl acetate solvent. Thrombolytic and anthelminthic activities were explained by collecting human erythrocytes and earthworms as test models, respectively. Anxiolytic activity was evaluated by elevated plus maze and hole board models while cytotoxic test was conducted through brine shrimp lethality bioassay. Results MCE revealed the presence of alkaloids, flavonoids, tannin, diterpenes, glycosides, carbohydrates, phenols, fixed oils and fat. In case of thrombolytic test, the MCE, CSF, ASF and n-HSF had produced maximum clot lysis activity at 5 and 10 mg/ml dose conditions. Two different concentrations (10 and 20 mg/ml) of MCE and its fractions showed significant (p < 0.05) anthelminthic activities in a dose-dependent manner. Significant anxiolytic activity was observed for all fractions which was comparable to the standard drug diazepam (p < 0.05). Again, the cytotoxic screening also presented good potentials for all fractions. Conclusion From the findings of present study, we can conclude that MCE of B. nigra flowers and its fraction possess significant anxiolytic, anthelmintic, anticancer and thrombolytic properties which may be a good candidate for treating these diseases through the determination of bio-active lead compounds.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3886
Author(s):  
Stefania Sut ◽  
Irene Ferrarese ◽  
Maria Giovanna Lupo ◽  
Nicola De Zordi ◽  
Elisa Tripicchio ◽  
...  

In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.


Sign in / Sign up

Export Citation Format

Share Document