scholarly journals Mechanisms of vascular dysfunction in mice with endothelium-specific deletion of the PPAR-δ gene

2014 ◽  
Vol 306 (7) ◽  
pp. H1001-H1010 ◽  
Author(s):  
Livius V. d'Uscio ◽  
Tongrong He ◽  
Anantha Vijay R. Santhanam ◽  
Li-Jung Tai ◽  
Ronald M. Evans ◽  
...  

Peroxisome proliferator-activated receptor (PPAR)-δ is a nuclear hormone receptor that is mainly involved in lipid metabolism. Recent studies have suggested that PPAR-δ agonists exert vascular protective effects. The present study was designed to characterize vascular function in mice with genetic inactivation of PPAR-δ in the endothelium. Mice with vascular endothelial cell-specific deletion of the PPAR-δ gene (ePPARδ−/− mice) were generated using loxP/Cre technology. ePPARδ−/− mice were normotensive and did not display any sign of metabolic syndrome. Endothelium-dependent relaxations to ACh and endothelium-independent relaxations to the nitric oxide (NO) donor diethylammonium ( Z)-1-( N, N-diethylamino)diazen-1-ium-1,2-diolate were both significantly impaired in the aorta and carotid arteries of ePPARδ−/− mice ( P < 0.05). In ePPARδ−/− mouse aortas, phosphorylation of endothelial NO synthase at Ser1177 was significantly decreased ( P < 0.05). However, basal levels of cGMP were unexpectedly increased ( P < 0.05). Enzymatic activity of GTP-cyclohydrolase I and tetrahydrobiopterin levels were also enhanced in ePPARδ−/− mice ( P < 0.05). Most notably, endothelium-specific deletion of the PPAR-δ gene significantly decreased protein expressions of catalase and glutathione peroxidase 1 and resulted in increased levels of H2O2 in the aorta ( P < 0.05). In contrast, superoxide anion production was unaltered. Moreover, treatment with catalase prevented the endothelial dysfunction and elevation of cGMP detected in aortas of ePPARδ−/− mice. The findings suggest that increased levels of cGMP caused by H2O2 impair vasodilator reactivity to endogenous and exogenous NO. We speculate that chronic elevation of H2O2 predisposes PPAR-δ-deficient arteries to oxidative stress and vascular dysfunction.

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Pimonrat Ketsawatsomkron ◽  
Deborah R Davis ◽  
Aline M Hilzendeger ◽  
Justin L Grobe ◽  
Curt D Sigmund

PPARG, a ligand-activated transcription factor plays a critical role in the regulation of blood pressure and vascular function. We hypothesized that smooth muscle cell (SMC) PPARG protects against hypertension (HT) and resistance vessel dysfunction. Transgenic mice expressing dominant negative PPARG (S-P467L) in SMC or non-transgenic controls (NT) were implanted with DOCA pellet and allowed ad libitum access to 0.15 M NaCl for 21 days in addition to regular chow and water. Blood pressure was monitored by telemetry and mesenteric arterial (MA) function was assessed by pressurized myograph. At baseline, 24-hour mean arterial pressure (MAP) was similar between NT and S-P467L mice, while the transgenic mice were tachycardic. DOCA-salt increased MAP to a much greater degree in S-P467L mice (Δ MAP; S-P467L: +34.2±6.0, NT: +13.3±5.7, p<0.05 vs NT). Heart rate was similarly decreased in both groups after DOCA-salt. Vasoconstriction to KCl, phenylephrine and endothelin-1 did not differ in MA from DOCA-salt treated NT and S-P467L, while the response to vasopressin was significantly reduced in S-P467L after DOCA-salt (% constriction at 10-8 M, S-P467L: 31.6±5.6, NT: 46.7±3.8, p<0.05 vs NT). Urinary copeptin, a surrogate marker for arginine vasopressin was similar in both groups regardless of treatment. Vasorelaxation to acetylcholine was slightly impaired in S-P467L MA compared to NT at baseline whereas this effect was further exaggerated after DOCA-salt (% relaxation at 10-5 M, S-P467L: 56.1±8.3, NT: 79.4±5.6, p<0.05 vs NT). Vascular morphology at luminal pressure of 75 mmHg showed a significant increase in wall thickness (S-P467L: 18.7±0.8, NT: 16.0±0.4, p<0.05 vs NT) and % media/lumen (S-P467L: 8.4±0.3, NT: 7.1±0.2, p<0.05 vs NT) in S-P467L MA after DOCA-salt. Expression of tissue inhibitor of metalloproteinases (TIMP)-4 and regulator of G-protein signaling (RGS)-5 transcript were 2- and 3.5-fold increased, respectively, in MA of NT with DOCA-salt compared to NT baseline. However, this induction was markedly blunted in S-P467L MA. We conclude that interference with PPARG function in SMC leads to altered gene expression crucial for normal vascular homeostasis, thereby sensitizing the mice to the effects of DOCA-salt induced HT and vascular dysfunction.


PPAR Research ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Elizabeth P. Moran ◽  
Jian-xing Ma

Peroxisome-proliferator activated receptor-alpha (PPARα) is a broadly expressed nuclear hormone receptor and is a transcription factor for diverse target genes possessing a PPAR response element (PPRE) in the promoter region. The PPRE is highly conserved, and PPARs thus regulate transcription of an extensive array of target genes involved in energy metabolism, vascular function, oxidative stress, inflammation, and many other biological processes. PPARαhas potent protective effects against neuronal cell death and microvascular impairment, which have been attributed in part to its antioxidant and anti-inflammatory properties. Here we discuss PPARα’s effects in neurodegenerative and microvascular diseases and also recent clinical findings that identified therapeutic effects of a PPARαagonist in diabetic microvascular complications.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Anand R Nair ◽  
Masashi Mukohda ◽  
Larry N Agbor ◽  
Ko-Ting Lu ◽  
Jing Wu ◽  
...  

Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor known to regulate metabolic and vascular function. Mutations in PPARγ result in hypertension, and synthetic agonists of PPARγ reduce blood pressure. Previously we found that mice expressing dominant-negative (DN) PPARγ driven by an endothelium-specific promoter (E-DN) exhibit vascular dysfunction. Preeclampsia (PE) is a hypertensive disorder of pregnancy which carries cardiovascular and metabolic risk to offspring. PE is associated with vascular dysfunction, and we therefore hypothesized a role for endothelial PPARγ in the pathogenesis of PE and its sequelae. C57BL/6J dams were bred with E-DN sires, and symptoms of PE were induced by the infusion of vasopressin (AVP, 24 ng/hr sc) throughout gestation. We assessed phenotypes of PE first in pregnant dams, and then in offspring as adults. Compared to saline infusion (SAL), AVP elevated maternal blood pressure (SBP: 116±3 vs 107±3, p<0.05) at gestational day (GD) 14-15 and urine protein (70±6 vs 27±4 mg/mL, p<0.05) at GD17. Offspring from these pregnancies were phenotyped in adulthood to assess cardiovascular and metabolic function. Data were stratified to sex, genotype, and maternal exposure to AVP vs SAL. Systolic blood pressure in adult male and female offspring born to AVP-infused pregnancies was similar to mice born to SAL pregnancies. At 20 weeks of age, vasorelaxation responses to acetylcholine were not different in offspring exposed to PE compared to mice born from SAL pregnancies. However, urinary protein levels were significantly elevated in both male (58±13 vs 32±5 mg/ml, p<0.05) and female (38±3 vs 25±2 mg/ml, p<0.05) adult E-DN born to PE pregnancies compared to E-DN controls born from SAL pregnancies. Male E-DN offspring exposed to PE showed significantly increased gain in body weight over time compared to male NT exposed to PE (ΔBW: 20±8 vs 14±2 g). These data highlight the impact of in utero exposure to elevated AVP upon cardiovascular function in the mother, and the adverse renal and metabolic consequences of PE upon offspring. Moreover, our data suggests that interference with endothelial PPARγ in pups born from PE pregnancies increases the risk for renal and metabolic dysfunction.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Masashi Mukoda ◽  
Madeliene Stump ◽  
Pimonrat Ketsawatsomkron ◽  
Frederick W Quelle ◽  
Curt D Sigmund

Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand activated transcription factor regulating metabolic and vascular function. PPARγ exerts anti-inflammatory actions, and recent data suggest this may be mediated by promoting the degradation of the p65 subunit of nuclear factor kappa B (NFκB). Transgenic mice expressing dominant negative PPARγ specifically in vascular smooth muscle or endothelium exhibited exacerbated atherosclerosis but the mechanism remains unknown. We hypothesized that PPARγ mutants promote inflammation because PPARγ-mediated p65 degradation is impaired. We tested this by co-transfection of HEK293T cells with vectors encoding p65, wildtype (WT) PPARγ, or various PPARγ mutants. The level of p65 protein expression was decreased by co-expression with WT-PPARγ (0.53±0.09 vs control, n=8). Whereas, the P467L PPARγ exhibited impaired degradation of p65 (1.0±0.06, n=10), the V290M (0.36±0.1), S273A (0.37±0.06), or K268R/K293R (0.41±0.03) mutations in PPARγ preserved p65 degradation. WT PPARγ was co-precipitated with p65 in co-transfected cells suggesting the mechanism of PPARγ-mediated p65 degradation involves a direct interaction between them. Consistent with this, the interaction between p65 and P467L PPARγ was severely impaired. To assess functional interactions between PPARγ and NFκB, we employed a model of interleukin-1β (IL-1β) mediated dysfunction in aortic rings. IL-1β dose-dependently induced NFκB activity as measured by increased phospho-p65 and decreased IκBα in aorta cultured for 2 hours with IL-1β. IL-1β dose-dependently reduced acetylcholine (Ach)-induced endothelial-dependent relaxation of aortic rings (80±12 vs 39±16, 20 pg/mL vs 11±3, 100 pg/mL, %). IL-1β-mediated loss of Ach vasodilation was reduced by the PPARγ agonist rosiglitazone (1 μM, 25 hr, n=3, p<0.05), or by transgenic over-expression of WT-PPARγ specifically in endothelium (n=6, p<0.05). We conclude that 1) p65 turnover may be regulated by PPARγ and that its mutation can result in impaired p65 degradation, 2) PPARγ activity can protect against vascular dysfunction associated with NFκB activation, and 3) loss of PPARγ-mediated p65 degradation may contribute to inflammation in hypertension and atherosclerosis.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Masashi Mukohda ◽  
Stella-Rita C Ibeawuchi ◽  
Chunyan Hu ◽  
Ko-Ting Lu ◽  
Debbie R Davis ◽  
...  

Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand activated transcription factor regulating metabolic and vascular function. We previously reported that mice (S-DN) expressing dominant-negative PPARγ in smooth muscle cells (SMC) are hypertensive, exhibit impaired vascular relaxation and enhanced contraction, and display reduced expression of a novel PPARγ target gene, RhoBTB1. We hypothesized that RhoBTB1 may play a protective role in vascular function that is disrupted in S-DN mice and in other models of hypertension. We generated double transgenic mice (termed R+) with tamoxifen-inducible, Cre-dependent expression of RhoBTB1 in SMC. R+ mice were crossed with S-DN to produce mice (S-DN/R+) in which tamoxifen-treatment (75 mg/kg, ip, 5 days) restored RhoBTB1 expression in aorta to normal. Thoracic aorta and basilar artery from S-DN showed impaired acetylcholine (ACh)-induced endothelial-dependent relaxation, which was reversed by replacement of RhoBTB1 in SMC (thoracic aorta, 43.3±4.4 vs 74.2±1.1%, p<0.01, basilar artery, 19.9±6.7 vs 48.1±12.3%, p<0.05, n=6). Aorta from S-DN mice also displayed severely decreased sodium nitroprusside (SNP)-induced endothelial-independent relaxation with a right-shifted dose-response, which was also reversed in tamoxifen-treated S-DN/R+ mice (p<0.01, n=6). Importantly, replacement of RhoBTB1 also reversed the hypertensive phenotype observed in S-DN mice (Radiotelemetry SBP, 135.9±3.9 vs 123.7±3.0 mmHg, p<0.05, n=4). To examine if overexpression of RhoBTB1 in SMC has a protective effect on other hypertensive models, Ang-II (490 ng/min/kg) was infused in tamoxifen treated R+ mice for 2 wks. RhoBTB1 expression prevented Ang-II-induced impairment of ACh relaxation in basilar artery (17.0±8.6 in control mice vs 40.7±5.3 % in R+ mice, p<0.05, n=4) and decreased SBP (166.0±7.2 in control mice vs 133.3±5.1 mmHg in R+ mice, p<0.05, n=4). We conclude that a) loss of RhoBTB1 function explains the vascular dysfunction and hypertension observed in response to interference with PPARγ in smooth muscle, and b) RhoBTB1 in SMC has an anti-hypertensive effect and facilitates vasodilatation.


Author(s):  
Ryuni Kim ◽  
Hyebeen Kim ◽  
Minju Im ◽  
Sun Kyu Park ◽  
Hae Jung Han ◽  
...  

BST204 is a purified ginseng dry extract that has an inhibitory effect on lipopolysaccharide-induced inflammatory responses, but its effect on muscle atrophy is yet to be investigated. In this study, C2C12 myoblasts were induced to differentiate for three days followed by the treatment of dexamethasone (DEX), a corticosteroid drug, with vehicle or BST204 for one day and subjected to immunoblotting, immunocytochemistry, qRT-PCR and biochemical analysis for mitochondrial function. BST204 alleviates the myotube atrophic effect mediated by DEX via the activation of protein kinase B/mammalian target of rapamycin (Akt/mTOR) signaling. Through this pathway, BST204 suppresses the expression of muscle-specific E3 ubiquitin ligases contributing to the enhanced myotube formation and enlarged myotube diameter in DEX-treated myotubes. In addition, BST204 treatment significantly decreases the mitochondrial reactive oxygen species production in DEX-treated myotubes. Furthermore, BST204 improves mitochondrial function by upregulating the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) in DEX-induced myotube atrophy. This study provides a mechanistic insight into the effect of BST204 on DEX-induced myotube atrophy, suggesting that BST204 has protective effects against the toxicity of a corticosteroid drug in muscle and promising potential as a nutraceutical remedy for the treatment of muscle weakness and atrophy.


2021 ◽  
Vol 11 (3) ◽  
pp. 325
Author(s):  
Fatima M. Shakova ◽  
Yuliya I. Kirova ◽  
Denis N. Silachev ◽  
Galina A. Romanova ◽  
Sergey G. Morozov

The pharmacological induction and activation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), a key regulator of ischemic brain tolerance, is a promising direction in neuroprotective therapy. Pharmacological agents with known abilities to modulate cerebral PGC-1α are scarce. This study focused on the potential PGC-1α-modulating activity of Mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) and Semax (ACTH(4–7) analog) in a rat model of photochemical-induced thrombosis (PT) in the prefrontal cortex. Mexidol (100 mg/kg) was administered intraperitoneally, and Semax (25 μg/kg) was administered intranasally, for 7 days each. The expression of PGC-1α and PGC-1α-dependent protein markers of mitochondriogenesis, angiogenesis, and synaptogenesis was measured in the penumbra via immunoblotting at Days 1, 3, 7, and 21 after PT. The nuclear content of PGC-1α was measured immunohistochemically. The suppression of PGC-1α expression was observed in the penumbra from 24 h to 21 days following PT and reflected decreases in both the number of neurons and PGC-1α expression in individual neurons. Administration of Mexidol or Semax was associated with preservation of the neuron number and neuronal expression of PGC-1α, stimulation of the nuclear translocation of PGC-1α, and increased contents of protein markers for PGC-1α activation. This study opens new prospects for the pharmacological modulation of PGC-1α in the ischemic brain.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Daniela P. Foti ◽  
Francesco Paonessa ◽  
Eusebio Chiefari ◽  
Antonio Brunetti

The insulin receptor (IR) plays a crucial role in mediating the metabolic and proliferative functions triggered by the peptide hormone insulin. There is considerable evidence that abnormalities in both IR expression and function may account for malignant transformation and tumour progression in some human neoplasias, including breast cancer. PPARγis a ligand-activated, nuclear hormone receptor implicated in many pleiotropic biological functions related to cell survival and proliferation. In the last decade, PPARγagonists—besides their known action and clinical use as insulin sensitizers—have proved to display a wide range of antineoplastic effects in cells and tissues expressing PPARγ, leading to intensive preclinical research in oncology. PPARγand activators affect tumours by different mechanisms, involving cell proliferation and differentiation, apoptosis, antiinflammatory, and antiangiogenic effects. We recently provided evidence that PPARγand agonists inhibit IR by non canonical, DNA-independent mechanisms affecting IR gene transcription. We conclude that IR may be considered a new PPARγ“target” gene, supporting a potential use of PPARγagonists as antiproliferative agents in selected neoplastic tissues that overexpress the IR.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Christian Werner ◽  
Stephan H Schirmer ◽  
Valerie Pavlickova ◽  
Michael Böhm ◽  
Ulrich Laufs

Objective: Peroxisome proliferator-activated receptor (PPAR)-α and -γ agonists modify lipid and glucose metabolism. The aim of the study was to characterize the effects of the dual PPAR-α/γ agonist aleglitazar on endothelial function, neoangiogenesis and arteriogenesis in mice and on human endothelial progenitor cells (EPC). Methods and Results: Male C57Bl/6 wild-type (WT, normal chow) and apolipoprotein E-deficient (apoE-/-) mice on Western-type diet (WTD) were treated with aleglitazar (10 mg/kg i.p.) or vehicle by daily injection. Hindlimb ischemia was induced by right femoral artery ligation (FAL). ApoE-/- mice on WTD treated with aleglitazar before FAL were characterized by an improvement of endothelial-dependent laser Doppler perfusion (right/left foot ratio 0.40±0.03) 1 week after FAL compared to controls (R/L foot ratio 0.24±0.01; p<0.001). Collateral-dependent perfusion measured under conditions of maximal vasodilatation 1 week after FAL using fluorescent microspheres was impaired in apoE-/- on WTD compared to WT mice (R/L leg ratio in WT 78±13 vs. apoE-/- 56±6; p<0.001) and was normalized by aleglitazar treatment. Neoangiogenesis was measured in-vivo by subcutaneously implanting discs covered with cell-impermeable filters. The vascularized area of the discs was quantified after 14 days by perfusion of the animals with space-filling fluorescent microspheres. Aleglitazar increased neoangiogenesis in WT mice by 178±18% compared to vehicle (p<0.05). Endothelium-dependent relaxation of aortic rings was impaired in apoE-/- mice on WTD for 6 weeks (relaxation to 52±5% of max. contraction) compared to WT animals (relaxation to 18±5% of max. contraction) (p<0.001). Aleglitazar treatment improved endothelial function (relaxation to 39±5% of max. contraction; p<0.05). In parallel, number and function of EPC were improved in mice. Studies in human EPC showed that 1) aleglitazar’s effects were mediated by both PPAR-α and -γ signalling and Akt and 2) migration and colony forming units were up-regulated by aleglitazar in cultivated EPC from CAD patients. Conclusion: The study provides evidence for beneficial effects of the dual PPAR-α/γ agonist aleglitazar on vascular function in addition to or mediated by its metabolic actions.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Weimin He

The nuclear hormone receptor peroxisome proliferator activated receptor gamma (PPAR) is an important transcription factor regulating adipocyte differentiation, lipid and glucose homeostasis, and insulin sensitivity. Numerous genetic mutations of PPAR have been identified and these mutations positively or negatively regulate insulin sensitivity. Among these, a relatively common polymorphism of PPAR, Pro12Ala of PPAR2, the isoform expressed only in adipose tissue has been shown to be associated with lower body mass index, enhanced insulin sensitivity, and resistance to the risk of type 2 diabetes in human subjects carrying this mutation. Subsequent studies in different ethnic populations, however, have revealed conflicting results, suggesting a complex interaction between the PPAR2 Pro12Ala polymorphism and environmental factors such as the ratio of dietary unsaturated fatty acids to saturated fatty acids and/or between the PPAR2 Pro12Ala polymorphism and genetic factors such as polymorphic mutations in other genes. In addition, this polymorphic mutation in PPAR2 is associated with other aspects of human diseases, including cancers, polycystic ovary syndrome, Alzheimer disease and aging. This review will highlight findings from recent studies.


Sign in / Sign up

Export Citation Format

Share Document