Isolation, mapping, and regulated expression of the gene encoding mouse C-type natriuretic peptide

1996 ◽  
Vol 271 (4) ◽  
pp. H1565-H1575 ◽  
Author(s):  
H. Huang ◽  
C. G. Acuff ◽  
M. E. Steinhelper

Genomic sequences encoding mouse C-type natriuretic peptide (CNP) were isolated from bacteriophage libraries and characterized by restriction enzyme and sequence analysis. The mouse CNP gene (Nppc) comprised at least two exons and one intron and included several cis-regulatory elements in the 5'-flanking sequence. The deduced amino acid sequence of mouse CNP-22 was identical to other mammalian CNPs. Analysis of allele distributions in interspecific back-cross and recombinant inbred strains assigned Nppc to chromosome 1. CNP transcripts were detected by ribonuclease protection analysis in brain, ovary, and uterus, with lower levels in testes and epididymus. Uterine CNP transcripts and protein were low in sexually immature mice and adults at estrus and increased at proestrus, but similar variations in ovarian CNP expression were not statistically significant. Atrial natriuretic peptide and B-type natriuretic peptide transcripts were not detected in mouse ovary or uterus. Thus CNP gene expression is regulated by tissue-specific and inducible mechanisms in female reproductive organs. Correlations between CNP expression and uterine fluid content suggest that CNP may regulate uterine fluid balance in mice and other mammals.

Genetics ◽  
1984 ◽  
Vol 108 (3) ◽  
pp. 651-667
Author(s):  
Douglas P Dickinson ◽  
Kenneth W Gross ◽  
Nina Piccini ◽  
Carol M Wilson

ABSTRACT Inbred strains of mice carry Ren-1, a gene encoding the thermostable Renin-1 isozyme. Ren-1 is expressed at relatively low levels in mouse submandibular gland and kidney. Some strains also carry Ren-2, a gene encoding the thermolabile Renin-2 isozyme. Ren-2 is expressed at high levels in the mouse submandibular gland and at very low levels, if at all, in the kidney. Ren-1 and Ren-2 are closely linked on mouse chromosome 1, show extensive homology in coding and noncoding regions and provide a model for studying the regulation of gene expression. An investigation of renin genes and enzymatic activity in wild-derived mice identified several restriction site polymorphisms as well as putative variants in renin gene expression and protein structure. The number of renin genes carried by different subpopulations of wild-derived mice is consistent with the occurrence of a gene duplication event prior to the divergence of M. spretus (2.75-5.5 million yr ago). This conclusion is in agreement with a prior estimate based upon comparative sequence analysis of Ren-1 and Ren-2 from inbred laboratory mice.


Cell ◽  
1988 ◽  
Vol 54 (6) ◽  
pp. 903-913 ◽  
Author(s):  
Masaaki Miyamoto ◽  
Takashi Fujita ◽  
Yoko Kimura ◽  
Mitsuo Maruyama ◽  
Hisashi Harada ◽  
...  

1988 ◽  
Vol 251 (3) ◽  
pp. 717-726 ◽  
Author(s):  
D Bown ◽  
T H N Ellis ◽  
J A Gatehouse

The sequence of a gene encoding convicilin, a seed storage protein in pea (Pisum sativum L.), is reported. This gene, designated cvcA, is one of a sub-family of two active genes. The transcription start of cvcA was mapped. Convicilin genes are expressed in developing pea seed cotyledons, with maximum levels of the corresponding mRNA species present at 16-18 days after flowering. The gene sequence shows that convicilin is similar to vicilin, but differs by the insertion of a 121-amino-acid sequence near the N-terminus of the protein. This inserted sequence is very hydrophilic and has a high proportion of charged and acidic residues; it is of a similar amino acid composition to the sequences found near the C-terminal of the alpha-subunit in pea legumin genes, but is not directly homologous with them. Comparison of this sequence with the ‘inserted’ sequence in soya-bean (Glycine max) conglycinin (a homologous vicilin-type protein) suggests that the two insertions were independent events. The 5′ flanking sequence of the gene contains several putative regulatory elements, besides a consensus promoter sequence.


2021 ◽  
Vol 22 (12) ◽  
pp. 6450
Author(s):  
Anita Wiśniewska ◽  
Kamila Wojszko ◽  
Elżbieta Różańska ◽  
Klaudia Lenarczyk ◽  
Karol Kuczerski ◽  
...  

Transcription factors are proteins that directly bind to regulatory sequences of genes to modulate and adjust plants’ responses to different stimuli including biotic and abiotic stresses. Sedentary plant parasitic nematodes, such as beet cyst nematode, Heterodera schachtii, have developed molecular tools to reprogram plant cell metabolism via the sophisticated manipulation of genes expression, to allow root invasion and the induction of a sequence of structural and physiological changes in plant tissues, leading to the formation of permanent feeding sites composed of modified plant cells (commonly called a syncytium). Here, we report on the AtMYB59 gene encoding putative MYB transcription factor that is downregulated in syncytia, as confirmed by RT-PCR and a promoter pMyb59::GUS activity assays. The constitutive overexpression of AtMYB59 led to the reduction in A. thaliana susceptibility, as indicated by decreased numbers of developed females, and to the disturbed development of nematode-induced syncytia. In contrast, mutant lines with a silenced expression of AtMYB59 were more susceptible to this parasite. The involvement of ABA in the modulation of AtMYB59 gene transcription appears feasible by several ABA-responsive cis regulatory elements, which were identified in silico in the gene promoter sequence, and experimental assays showed the induction of AtMYB59 transcription after ABA treatment. Based on these results, we suggest that AtMYB59 plays an important role in the successful parasitism of H. schachtii on A. thaliana roots.


1989 ◽  
Vol 264 (21) ◽  
pp. 12201-12207 ◽  
Author(s):  
S Nomura ◽  
S Hashmi ◽  
J H McVey ◽  
J Ham ◽  
M Parker ◽  
...  

Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 259-267 ◽  
Author(s):  
Joachim Altschmied ◽  
Jacqueline Delfgaauw ◽  
Brigitta Wilde ◽  
Jutta Duschl ◽  
Laurence Bouneau ◽  
...  

Abstract The microphthalmia-associated transcription factor (MITF) exists in at least four isoforms. These are generated in higher vertebrates using alternative 5′ exons and promoters from a single gene. Two separate genes (mitf-m and mitf-b), however, are present in different teleost fish species including the poeciliid Xiphophorus, the pufferfishes Fugu rubripes and Tetraodon nigroviridis, and the zebrafish Danio rerio. Fish proteins MITF-m and MITF-b correspond at both the structural and the expression levels to one particular bird/mammalian MITF isoform. In the teleost lineage subfunctionalization of mitf genes after duplication at least 100 million years ago is associated with the degeneration of alternative exons and, probably, regulatory elements and promoters. For example, a remnant of the first exon specific for MITF-m is detected within the pufferfish gene encoding MITF-b. Retracing the evolutionary history of mitf genes in vertebrates uncovered the differential recruitment of new introns specific for either the teleost or the bird/mammalian lineage.


1991 ◽  
Vol 11 (3) ◽  
pp. 1488-1499 ◽  
Author(s):  
H J Roth ◽  
G C Das ◽  
J Piatigorsky

Expression of the chicken beta B1-crystallin gene was examined. Northern (RNA) blot and primer extension analyses showed that while abundant in the lens, the beta B1 mRNA is absent from the liver, brain, heart, skeletal muscle, and fibroblasts of the chicken embryo, suggesting lens specificity. Promoter fragments ranging from 434 to 126 bp of 5'-flanking sequence (plus 30 bp of exon 1) of the beta B1 gene fused to the bacterial chloramphenicol acetyltransferase gene functioned much more efficiently in transfected embryonic chicken lens epithelial cells than in transfected primary muscle fibroblasts or HeLa cells. Transient expression of recombinant plasmids in cultured lens cells, DNase I footprinting, in vitro transcription in a HeLa cell extract, and gel mobility shift assays were used to identify putative functional promoter elements of the beta B1-crystallin gene. Sequence analysis revealed a number of potential regulatory elements between positions -126 and -53 of the beta B1 promoter, including two Sp1 sites, two octamer binding sequence-like sites (OL-1 and OL-2), and two polyomavirus enhancer-like sites (PL-1 and PL-2). Deletion and site-specific mutation experiments established the functional importance of PL-1 (-116 to -102), PL-2 (-90 to -76), and OL-2 (-75 to -68). DNase I footprinting using a lens or a HeLa cell nuclear extract and gel mobility shifts using a lens nuclear extract indicated the presence of putative lens transcription factors binding to these DNA sequences. Competition experiments provided evidence that PL-1 and PL-2 recognize the same or very similar factors, while OL-2 recognizes a different factor. Our data suggest that the same or closely related transcription factors found in many tissues are used for expression of the chicken beta B1-crystallin gene in the lens.


1996 ◽  
Vol 183 (3) ◽  
pp. 1141-1150 ◽  
Author(s):  
C E Müller-Sieburg ◽  
R Riblet

The genetic elements that govern the differentiation and proliferation of hematopoietic stem cells remain to be defined. We describe here marked strain-specific differences in the frequency of long-term culture-initiating cells (LTC-IC) in the bone marrow of different strains of mice. Mice of C57Bl/6 background showed the lowest levels of stem cells in marrow, averaging 2.4 +/- .06 LTC-IC/10(5) cells, BALB/c is intermediate (9.1 +/- 4.2/10(5) cells), and DBA/2 mice contained a 11-fold higher frequency of LTC-IC (28.1 +/- 16.5/10(5) cells) than C57Bl/6 mice. The genetic factors affecting the size of the stem cell pool were analyzed in the C57Bl/6 X DBA/2 recombinant inbred strains; LTC-IC frequencies ranged widely, indicating that stem cell frequencies are controlled by multiple genes. Quantitative trait linkage analysis suggested that two loci that have major quantitative effects are located on chromosome 1 near Adprp and Acrg, respectively. The mapping of the locus near Adprp was confirmed by finding an elevated stem cell frequency in B6.C-H25, a C57Bl/6 congenic strain that carries a portion of chromosome 1 derived from BALB/c mice. We have named this gene Scfr1 (stem cell frequency regulator 1). The allelic forms of this gene may be an important predictor of stem cell number and thus would be useful for evaluating cell sources in clinical stem cell transplantation.


1992 ◽  
Vol 12 (7) ◽  
pp. 2941-2948
Author(s):  
A Lombardo ◽  
G P Cereghino ◽  
I E Scheffler

We have examined the expression of the gene encoding the iron-protein subunit (Ip) of succinate dehydrogenase in Saccharomyces cerevisiae. The gene had been cloned by us and shown to be subject to glucose regulation (A. Lombardo, K. Carine, and I. E. Scheffler, J. Biol. Chem. 265:10419-10423, 1990). We discovered that a significant part of the regulation of the Ip mRNA levels by glucose involves the regulation of the turnover rate of this mRNA. In the presence of glucose, the half-life appears to be less than 5 min, while in glycerol medium, the half-life is greater than 60 min. The gene is also regulated transcriptionally by glucose. The upstream promoter sequence appeared to have four regulatory elements with consensus sequences shown to be responsible for the interaction with the HAP2/3/4 regulatory complex. A deletion analysis has shown that the two distal elements are redundant. These measurements were carried out by Northern (RNA) analyses of Ip mRNA transcripts as well as by assays of beta-galactosidase activity in cells carrying constructs of the Ip promoter linked to the lacZ coding sequence. These observations on the regulation of mRNA stability were also extended to the mRNA of the flavoprotein subunit of succinate dehydrogenase and in some experiments of iso-1-cytochrome c.


Sign in / Sign up

Export Citation Format

Share Document