Age effects on interrelationships between lung volume and heart rate during standing

1997 ◽  
Vol 273 (5) ◽  
pp. H2128-H2134 ◽  
Author(s):  
Garrett Stanley ◽  
Davide Verotta ◽  
Noah Craft ◽  
Ronald A. Siegel ◽  
Janice B. Schwartz

To determine the effects of aging and posture on the relationship between respiration and heart rate (HR), we collected 5 min of lung volume and R-R interval data from 7 young (27 ± 3 yr, mean ± SD) and 10 old (69 ± 6 yr) healthy humans during spontaneous breathing while they were supine (SU) and standing (ST). Lung volume and HR power spectra and transfer functions between lung volume and HR were estimated. Age and position effects and age-position interactions were determined by analysis of variance for repeated measures. Older subjects had a lower and more variable respiration rate ( P < 0.03, P < 0.04), but both age groups exhibited decreased rate of respiration and increased tidal volume with ST ( P < 0.05, P < 0.005). ST decreased lung volume-to-HR transfer function magnitude in both groups ( P < 0.07). The more marked age-related differences were in phase angle. Both SU and ST phase angles were greater in older subjects ( P < 0.003). ST decreased phase angle in young but increased phase angle in older subjects ( P < 0.001). In conclusion, respiration, and respiration-HR interrelationships are altered by aging, with increased time delays between lung volume and HR and altered relationships with ST.

1996 ◽  
Vol 270 (5) ◽  
pp. H1833-H1840 ◽  
Author(s):  
G. Stanley ◽  
D. Verotta ◽  
N. Craft ◽  
R. A. Siegel ◽  
J. B. Schwartz

To determine effects of aging and autonomic input on interrelationships between respiratory and heart rate variability, we collected 5 min of lung volume of R-R interval data from 7 young [27 +/- 3(SD) yr] and 10 older (69 +/- 6 yr) healthy supine humans before and after double pharmacological autonomic blockade with propranolol (0.2 mg/kg iv) and atropine (0.04 mg/kg iv). Estimates of respiratory and heart rate power spectra and linear transfer functions between the two groups were generated by Fourier analysis. Age, double blockade effects, the age-drug interactions were determined by analysis of variance for repeated measures. Basal R-R intervals were unaffected by age. Double blockade decreased R-R intervals and variability in both age groups (P < 0.0001), but R-R intervals decreased less in older than in young subjects (P < 0.0001). In contrast, basal respiratory intervals and standard deviation were greater in older subjects (P = 0.05) and were unaffected by double blockade in young and older subjects. Lung volume-to-heart rate spectral coherence was highest at frequencies associated with respiration and greater in young than in older subjects (P < 0.07). Double blockade decreased lung volume-to-heart rate variability transfer function magnitude (P < 0.007) and increased phase angle (P < 0.02) without age effects or age-drug interactions. In conclusion, heart rate, respiration, and respiration-heart rate interrelations are altered by aging, and double autonomic pharmacological blockade does not eliminate all age-related differences.


Author(s):  
A. E. Chernikova ◽  
Yu. P. Potekhina

Introduction. An osteopathic examination determines the rate, the amplitude and the strength of the main rhythms (cardiac, respiratory and cranial). However, there are relatively few studies in the available literature dedicated to the influence of osteopathic correction (OC) on the characteristics of these rhythms.Goal of research — to study the influence of OC on the rate characteristics of various rhythms of the human body.Materials and methods. 88 adult osteopathic patients aged from 18 to 81 years were examined, among them 30 men and 58 women. All patients received general osteopathic examination. The rate of the cranial rhythm (RCR), respiratory rate (RR) heart rate (HR), the mobility of the nervous processes (MNP) and the connective tissue mobility (CTM) were assessed before and after the OC session.Results. Since age varied greatly in the examined group, a correlation analysis of age-related changes of the assessed rhythms was carried out. Only the CTM correlated with age (r=–0,28; p<0,05) in a statistically significant way. The rank dispersion analysis of Kruskal–Wallis also showed statistically significant difference in this indicator in different age groups (p=0,043). With the increase of years, the CTM decreases gradually. After the OC, the CTM, increased in a statistically significant way (p<0,0001). The RCR varied from 5 to 12 cycles/min in the examined group, which corresponded to the norm. After the OC, the RCR has increased in a statistically significant way (p<0,0001), the MNP has also increased (p<0,0001). The initial heart rate in the subjects varied from 56 to 94 beats/min, and in 15 % it exceeded the norm. After the OC the heart rate corresponded to the norm in all patients. The heart rate and the respiratory rate significantly decreased after the OC (р<0,0001).Conclusion. The described biorhythm changes after the OC session may be indicative of the improvement of the nervous regulation, of the normalization of the autonomic balance, of the improvement of the biomechanical properties of body tissues and of the increase of their mobility. The assessed parameters can be measured quickly without any additional equipment and can be used in order to study the results of the OC.


Circulation ◽  
2016 ◽  
Vol 133 (suppl_1) ◽  
Author(s):  
Haitham Ahmed ◽  
Di Zhao ◽  
Eliseo Guallar ◽  
Michael J Blaha ◽  
Clinton A Brawner ◽  
...  

Background: The declines in peak heart rate (HR) and fitness level with age are related; however, whether this association differs based on gender is not well appreciated. In a large cross-sectional cohort of women and men referred for a clinically indicated exercise treadmill test (ETT), we set out to determine whether the decrease in peak HR by age varied by gender (and fitness) in the Henry Ford Exercise Testing (FIT) project. Methods: We analyzed data on 38,196 apparently-healthy patients aged 18-96 [mean age 51 ± 12 yrs, 25% black, 48% women] who completed an ETT. Those with history of coronary heart disease, congestive heart failure, diabetes on medications, atrial fibrillation or flutter, or taking AV nodal blocking medications were excluded. Being “fit” was defined as achieving ≥ the median MET level for each sex/age-decile group. Peak HR vs age was plotted, and regression lines were used to determine the intercept and slope for each group. Results: Men had higher peak HR than women but with a greater decline over time; the respective intercepts and slopes for peak HR estimates were 202.9 and 0.90 for men and 197.3 and 0.80 for women, (p-interaction = 0.023). Fit people also started out with higher peak HR but approached unfit people at higher age groups; respective intercept and slope by fitness status were 203.0 and 0.87 for fit and 194.7 and 0.83 for unfit (p-interaction <0.001). Separate regression lines were generated for categories of fit men/unfit men, fit women/unfit women ( Figure ). Fit and unfit men had similar declines in peak HR with increasing age (slope=0.92); whereas fit women (slope=0.81) had a slightly greater decline in peak HR with increasing age than unfit women (slope=0.73). However, peak absolute HR for fit people still remains higher than for unfit people even into elderly ages. Conclusion: In this cross-sectional cohort of patients referred for a clinical ETT, we found that the age-related decline in peak HR is influenced by both gender and fitness status.


1990 ◽  
Vol 33 (1) ◽  
pp. 51-69 ◽  
Author(s):  
Jeannette D. Hoit ◽  
Thomas J. Hixon ◽  
Peter J. Watson ◽  
Wayne J. Morgan

An investigation was conducted to elucidate the nature of speech breathing in children and adolescents and to determine if sex and age influence performance. Eighty healthy boys and girls representing four age groups (7, 10, 13, and 16 years) were studied using helium dilution to obtain measures of subdivisions of the lung volume and using magnetometers to obtain measures of resting tidal breathing and speech breathing. Results for subdivisions of the lung volume and resting tidal breathing revealed sex- and age-related differences, most of which were attributable to differences in breathing apparatus size. Results for speech breathing indicated that sex was not an important variable, but that age was critical in determining speech breathing performance. The most substantial differences were between the 7-year-old group and older groups. These differences were characterized by larger lung volume, rib cage volume, and abdominal volume initiations and terminations for breath groups, larger lung volume excursions per breath group, fewer numbers of syllables per breath group, and larger lung volume expenditures per syllable for the 7-year-old group compared to older groups. In most respects, speech breathing appeared adultlike by the end of the first decade of life. Clinical implications regarding these findings are offered.


2020 ◽  
Author(s):  
Nils Rosjat ◽  
Bin A. Wang ◽  
Liqing Liu ◽  
Gereon R. Fink ◽  
Silvia Daun

AbstractCognitive performance slows down with increasing age. This includes cognitive processes that are essential for the performance of a motor act, such as the slowing down in response to an external stimulus. The objective of this study was to identify aging-associated functional changes in the brain networks that are involved in the transformation of external stimuli into motor action. To investigate this topic, we employed dynamic graphs based on phase-locking of Electroencephalography signals recorded from healthy younger and older subjects while performing a simple visually-cued finger-tapping task. The network analysis yielded specific age-related network structures varying in time in the low frequencies (2-7 Hz), which are closely connected to stimulus processing, movement initiation and execution in both age groups. The networks in older subjects, however, contained several additional, particularly interhemispheric, connections and showed an overall increased coupling density. Cluster analyses revealed reduced variability of the subnetworks in older subjects, particularly during movement preparation. In younger subjects, occipital, parietal, sensorimotor and central regions were - temporally arranged in this order - heavily involved in hub nodes. Whereas in older subjects, a hub in frontal regions preceded the noticeably delayed occurrence of sensorimotor hubs, indicating different neural information processing in older subjects.All observed changes in brain network organization, which are based on neural synchronization in the low frequencies, provide a possible neural mechanism underlying previous fMRI data, which report an overactivation, especially in the prefrontal and pre-motor areas, associated with a loss of hemispheric lateralization in older subjects.


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2218
Author(s):  
Bernhard Grässler ◽  
Milos Dordevic ◽  
Sabine Darius ◽  
Lukas Vogelmann ◽  
Fabian Herold ◽  
...  

Our goal was to investigate age-related differences in cardiac autonomic control by means of heart rate variability (HRV). For this purpose, 30 healthy older and 34 younger adults were studied during three different conditions: (i) during resting state, (ii) during the execution of two cognitive tasks, and (iii) during the subsequent recovery phase. Mean heart rate and HRV parameters were higher in younger compared to older participants during all three conditions. While the mean heart rate was higher in older adults during the cognitive tasks compared to the resting state, it did not change in younger adults. In contrast, the change in HRV during the three conditions did not differ between age groups. Our results suggest decreased parasympathetic activity reflecting declined cardiac autonomic control with aging. In conclusion, HRV analysis could support the assessment of normal age-related alterations in cardiac autonomic control at resting state and in response to cognitive demands.


BMJ Open ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. e029713
Author(s):  
Mette Korshøj ◽  
Els Clays ◽  
Niklas Krause ◽  
Nidhi Gupta ◽  
Marie Birk Jørgensen ◽  
...  

ObjectiveHigh levels of occupational physical activity (OPA) increase heart rate, blood pressure (BP) and the risk of hypertension. Older workers may be more vulnerable to high levels of OPA due to age-related degeneration of the cardiovascular system and cardiorespiratory fitness. This study investigates the association of relative aerobic workload (RAW) with resting BP and examines if this relation is moderated by age.DesignCross-sectional epidemiological study.SettingData were collected among employees of 15 Danish companies in the cleaning, manufacturing and transport sectors.Participants2107 employees were invited for participation, of these 1087 accepted and 562 (42% female and 4% non-Westerns) were included in the analysis based on the criteria of being non-pregnant, no allergy to bandages, sufficient amount of heart rate data corresponding to ≥4 work hours per workday or 75% of average work hours, and no missing outcome and confounder values.Primary and secondary outcome measuresThe primary outcome measure was BP.ResultsHeart rate reserve was estimated from ambulatory 24-hour heart rate measures covering 2.5 workdays per participant (SD 1.0 day). Age significantly moderated the association between RAW and BP. Mean intensity and duration of high RAW (≥30% heart rate reserve) showed positive associations with diastolic BP and negative associations with pulse pressure (PP) among participants ≥47 years old. Tendencies towards negative associations between RAW and BP were seen among participants <47 years old.ConclusionsMean intensity and duration of RAW increased diastolic BP among participants ≥47 years old. Negative associations with PP may be due to healthy worker selection bias. Prevention of hypertension should consider reductions in RAW for ageing workers.


2020 ◽  
Vol 319 (1) ◽  
pp. L91-L94 ◽  
Author(s):  
Matthew A. Liu ◽  
Phoebe C. Stark ◽  
G. Kim Prisk ◽  
John B. West

The oxygen deficit (OD) is the difference between the end-tidal alveolar Po2 and the calculated Po2 of arterial blood based on measured oxygen saturation that acts as a proxy for the alveolar-arterial Po2 difference. Previous work has shown that the alveolar gas meter (AGM100) can measure pulmonary gas exchange, via the OD, in patients with a history of lung disease and in normal subjects breathing 12.5% O2. The present study measured how the OD varied at different values of inspired O2. Healthy subjects were split by age (young 22–31; n = 23; older 42–90; n = 13). Across all inspired O2 levels (12.5, 15, 17.5, and 21%), the OD was higher in the older cohort 10.6 ± 1.0 mmHg compared with the young −0.4 ± 0.6 mmHg ( P < 0.0001, using repeated measures ANOVA), the difference being significant at all O2 levels (all P < 0.0001). The OD difference between age groups and its variance was greater at higher O2 values (age × O2 interaction; P = 0.002). The decrease in OD with lower values of inspired O2 in both cohorts is consistent with the increased accuracy of the calculated arterial Po2 based on the O2-Hb dissociation curve and with the expected decrease in the alveolar-arterial Po2 difference due to a lower arterial saturation. The persisting higher OD seen in older subjects, irrespective of the inspired O2, shows that the measurement of OD remains sensitive to mild gas exchange impairment, even when breathing 21% O2.


2021 ◽  
Vol 10 (4) ◽  
pp. 3310-3315
Author(s):  
Bulat Ildarovich Vakhitov

For the first time, studies have been conducted to study the reaction of animal heart rate to various modes of motor activity after a traumatic brain injury. It was revealed that on the first day after modeling an open head injury in rats of all age groups, a pronounced increase in heart rate was observed. In this case, the smallest heart rate response to brain injury is observed in animals of immature age. It was found that the implementation of systematic dynamic exercises by animals of mature and preschool age after modeling a craniocerebral injury contributes to a significant decrease in heart rate. A more pronounced formation of training bradycardia is observed in immature animals. It was revealed that limiting motor activity and performing isometric exercises after a traumatic brain injury maintain heart rate at an increased level in all age groups of animals and significantly inhibits the natural, age-related decrease in heart rate in immature animals.


Sign in / Sign up

Export Citation Format

Share Document