M2 macrophages have unique transcriptomes but conditioned media does not promote profibrotic responses in lung fibroblasts or alveolar epithelial cells in vitro

Author(s):  
Elissa M Hult ◽  
Stephen James Gurczynski ◽  
Bethany B Moore

Macrophages are critical regulators of pulmonary fibrosis. Their plasticity, proximity, and ability to crosstalk with structural cells of the lung make them a key cell type of interest in the regulation of lung fibrosis. Macrophages can express a variety of phenotypes which have been historically represented through an "M1-like" to "M2-like" delineation. In this classification, M1-like macrophages are proinflammatory and have increased phagocytic capacity compared to alternatively activated M2-like macrophages that are profibrotic and are associated with wound healing. Extensive evidence in the field in both patients and animal models align pulmonary fibrosis with M2 macrophages. In this paper, we performed RNAseq to fully characterize M1 vs. M2-skewed bone marrow-derived macrophages (BMDMs) and investigated the profibrotic abilities of M2 BMDM conditioned media (CM) to promote fibroblast migration, proliferation, alveolar epithelial cell (AEC) apoptosis, and mRNA expression of key fibrotic genes in both fibroblasts and in AECs. Although M2 CM-treated fibroblasts had increased migration and M2 CM-treated fibroblasts and AECs had increased expression of profibrotic proteins over M1 CM-treated cells, all differences can be attributed to M2 polarization reagents IL-4 and IL-13 also present in the CM. Collectively, these data suggest that the profibrotic effects associated with M2 macrophage CM in vitro are attributable to effects of polarization cytokines rather than additional factors secreted in response to those polarizing cytokines.

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257281
Author(s):  
Silvia Speca ◽  
Caroline Dubuquoy ◽  
Christel Rousseaux ◽  
Philippe Chavatte ◽  
Pierre Desreumaux ◽  
...  

The development of more effective, better tolerated drug treatments for progressive pulmonary fibrosis (of which idiopathic pulmonary fibrosis is the most common and severe form) is a research priority. The peroxisome proliferator-activated receptor gamma (PPAR-γ) is a key regulator of inflammation and fibrosis and therefore represents a potential therapeutic target. However, the use of synthetic PPAR-γ agonists may be limited by their potentially severe adverse effects. In a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, we have demonstrated that the non-racemic selective PPAR-γ modulator GED-0507 is able to reduce body weight loss, ameliorate clinical and histological features of pulmonary fibrosis, and increase survival rate without any safety concerns. Here, we focused on the biomolecular effects of GED-0507 on various inflammatory/fibrotic pathways. We demonstrated that preventive and therapeutic administration of GED-0507 reduced the BLM-induced mRNA expression of several markers of fibrosis, including transforming growth factor (TGF)-β, alpha-smooth muscle actin, collagen and fibronectin as well as epithelial-to-mesenchymal transition (EMT) and expression of mucin 5B. The beneficial effect of GED-0507 on pulmonary fibrosis was confirmed in vitro by its ability to control TGFβ-induced myofibroblast activation in the A549 human alveolar epithelial cell line, the MRC-5 lung fibroblast line, and primary human lung fibroblasts. Compared with the US Food and Drug Administration-approved antifibrotic drugs pirfenidone and nintedanib, GED-0507 displayed greater antifibrotic activity by controlling alveolar epithelial cell dysfunction, EMT, and extracellular matrix remodeling. In conclusion, GED-0507 demonstrated potent antifibrotic properties and might be a promising drug candidate for the treatment of pulmonary fibrosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Liang ◽  
Yanhua Chang ◽  
Jing Liu ◽  
Yan Yu ◽  
Wancheng Qiu ◽  
...  

Pulmonary fibrosis is a kind of interstitial lung disease with progressive pulmonary scar formation, leading to irreversible loss of lung functions. The TGF-β1/Smad signaling pathway plays a key role in fibrogenic processes. It is associated with the increased synthesis of extracellular matrix, enhanced proliferation of fibroblasts, and transformation of alveolar epithelial cells into interstitial cells. We investigated P-Rex1, a PIP3-Gβγ–dependent guanine nucleotide exchange factor (GEF) for Rac, for its potential role in TGF-β1–induced pulmonary fibrosis. A high expression level of P-Rex1 was identified in the lung tissue of patients with pulmonary fibrosis than that from healthy donors. Using the P-Rex1 knockdown and overexpression system, we established a novel player of P-Rex1 in mouse lung fibroblast migration. P-Rex1 contributed to fibrogenic processes in lung fibroblasts by targeting the TGF-β type Ⅱ receptor (TGFβR2). The RNA-seq analysis for expression profiling confirmed the modulation of P-Rex1 in cell migration and the involvement of P-Rex1 in TGF-β1 signaling. These results identified P-Rex1 as a signaling molecule involved in TGF-β1–induced pulmonary fibrosis, suggesting that P-Rex1 may be a potential target for pulmonary fibrosis treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaohe Li ◽  
Rui Liu ◽  
Yunyao Cui ◽  
Jingjing Liang ◽  
Zhun Bi ◽  
...  

Pulmonary fibrosis is a known sequela of severe or persistent lung damage. Existing clinical, imaging and autopsy studies have shown that the lungs exhibit a pathological pulmonary fibrosis phenotype after infection with coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pulmonary fibrosis may be one of the most serious sequelae associated with coronavirus disease 2019 (COVID-19). In this study, we aimed to examine the preventative effects of the antiviral drug remdesivir on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of remdesivir on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of remdesivir in lung fibroblasts and alveolar epithelial cells in vitro. The preventive remdesivir treatment was started on the day of bleomycin installation, and the results showed that remdesivir significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro experiments showed that remdesivir dose-dependently suppressed TGF-β1-induced lung fibroblast activation and improved TGF-β1-induced alveolar epithelial to mesenchymal transition. Our results indicate that remdesivir can preventatively alleviate the severity of pulmonary fibrosis and provide some reference for the prevention of pulmonary fibrosis in patients with COVID-19.


2005 ◽  
Vol 288 (2) ◽  
pp. L342-L349 ◽  
Author(s):  
Hiroshi Kida ◽  
Mitsuhiro Yoshida ◽  
Shigenori Hoshino ◽  
Koji Inoue ◽  
Yukihiro Yano ◽  
...  

The goal of this study was to examine whether IL-6 could directly protect lung resident cells, especially alveolar epithelial cells, from reactive oxygen species (ROS)-induced cell death. ROS induced IL-6 gene expression in organotypic lung slices of wild-type (WT) mice. ROS also induced IL-6 gene expression in mouse primary lung fibroblasts, dose dependently. The organotypic lung slices of WT were more resistant to ROS-induced DNA fragmentation than those of IL-6-deficient (IL-6−/−) mice. WT resistance against ROS was abrogated by treatment with anti-IL-6 antibody. TdT-mediated dUTP nick end labeling stain and electron microscopy revealed that DNA fragmented cells in the IL-6−/− slice included alveolar epithelial cells and endothelial cells. In vitro studies demonstrated that IL-6 reduced ROS-induced A549 alveolar epithelial cell death. Together, these data suggest that IL-6 played an antioxidant role in the lung by protecting lung resident cells, especially alveolar epithelial cells, from ROS-induced cell death.


Thorax ◽  
2020 ◽  
Vol 75 (10) ◽  
pp. 870-881 ◽  
Author(s):  
Julien Guiot ◽  
Maureen Cambier ◽  
Amandine Boeckx ◽  
Monique Henket ◽  
Olivier Nivelles ◽  
...  

IntroductionIdiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung disease of unknown aetiology and cure. Recent studies have reported a dysregulation of exosomal microRNAs (miRs) in the IPF context. However, the impact of IPF-related exosomal miRs on the progression of pulmonary fibrosis is unknown.MethodsTwo independent cohorts were enrolled at the ambulatory care polyclinic of Liège University. Exosomes from sputum were obtained from 19 patients with IPF and 23 healthy subjects (HSs) (cohort 1), and the ones from plasma derived from 14 patients with IPF and 14 HSs (cohort 2). Exosomal miR expression was performed by quantitative reverse transcription–PCR. The functional role of exosomal miRs was assessed in vitro by transfecting miR mimics in human alveolar epithelial cells and lung fibroblasts.ResultsExosomal miR analysis showed that miR-142-3p was significantly upregulated in sputum and plasma of patients with IPF (8.06-fold, p<0.0001; 1.64 fold, p=0.008, respectively). Correlation analysis revealed a positive association between exosomal miR-142-3p and the percentage of macrophages from sputum of patients with IPF (r=0.576, p=0.012), suggesting macrophage origin of exosomal miR-142-3p upregulation. The overexpression of miR-142-3p in alveolar epithelial cells and lung fibroblasts was able to reduce the expression of transforming growth factor β receptor 1 (TGFβ-R1) and profibrotic genes. Furthermore, exosomes isolated from macrophages present antifibrotic properties due in part to the repression of TGFβ-R1 by miR-142-3p transfer in target cells.DiscussionOur results suggest that macrophage-derived exosomes may fight against pulmonary fibrosis progression via the delivery of antifibrotic miR-142–3 p to alveolar epithelial cells and lung fibroblasts.


Author(s):  
Yu-Zhi Lu ◽  
Li-Mei Liang ◽  
Pei-Pei Cheng ◽  
Li Xiong ◽  
Meng Wang ◽  
...  

The distribution of fibrosis in idiopathic pulmonary fibrosis (IPF) is sub-pleural with basal predominance. Alveolar epithelial cell was considered as the key cell in the initial phase of IPF. However, the idea of activation and damage of alveolar epithelial cells is very difficult to explain why fibrosis distributes in the sub-pleural area. In this study, human pleural mesothelial cell (PMC) line and primary rat PMC was used as in vitro model. Intra-peritoneal injection of bleomycin was used for making a pulmonary fibrosis model. The integrity of cultured monolayer PMCs was determined by transepithelial electric resistance (TEER). Pleural permeability was estimated by measuring paracellular transport of fluorescein isothiocyanate (FITC)-conjugated dextran. Changes in lung tissue of IPF patients were analyzed by Masson's and immunofluorescence staining. We found bleomycin induced PMCs damage and increased PMCs permeability, increased PMCs permeability aggravated bleomycin-induced sub-pleural inflammation and pulmonary fibrosis. Moreover, bleomycin was found to activate VEGF/Src signaling which increased PMCs permeability. In vivo, inhibition of VEGF/Src signaling prevented bleomycin-induced sub-pleural pulmonary fibrosis. At last, activation of VEGF/Src signaling was confirmed in sub-pleural area in IPF patients. Taken together, our findings indicate that VEGF/Src signaling mediated pleural barrier damage and increased permeability which contributes to sub-pleural pulmonary fibrosis.


2014 ◽  
Vol 307 (6) ◽  
pp. L449-L459 ◽  
Author(s):  
Seong Chul Kim ◽  
Thomas Kellett ◽  
Shaohua Wang ◽  
Miyuki Nishi ◽  
Nagaraja Nagre ◽  
...  

The molecular mechanisms for lung cell repair are largely unknown. Previous studies identified tripartite motif protein 72 (TRIM72) from striated muscle and linked its function to tissue repair. In this study, we characterized TRIM72 expression in lung tissues and investigated the role of TRIM72 in repair of alveolar epithelial cells. In vivo injury of lung cells was introduced by high tidal volume ventilation, and repair-defective cells were labeled with postinjury administration of propidium iodide. Primary alveolar epithelial cells were isolated and membrane wounding and repair were labeled separately. Our results show that absence of TRIM72 increases susceptibility to deformation-induced lung injury whereas TRIM72 overexpression is protective. In vitro cell wounding assay revealed that TRIM72 protects alveolar epithelial cells through promoting repair rather than increasing resistance to injury. The repair function of TRIM72 in lung cells is further linked to caveolin 1. These data suggest an essential role for TRIM72 in repair of alveolar epithelial cells under plasma membrane stress failure.


1999 ◽  
Vol 277 (6) ◽  
pp. L1158-L1164 ◽  
Author(s):  
Rongi Wang ◽  
Carlos Ramos ◽  
Iravati Joshi ◽  
Alex Zagariya ◽  
Annie Pardo ◽  
...  

Earlier work from this laboratory found that fibroblasts isolated from fibrotic human lung [human interstitial pulmonary fibrosis (HIPF)] secrete a soluble inducer(s) of apoptosis in alveolar epithelial cells (AECs) in vitro [B. D. Uhal, I. Joshi, A. True, S. Mundle, A. Raza, A. Pardo, and M. Selman. Am. J. Physiol. 269 ( Lung Cell. Mol. Physiol. 13): L819–L828, 1995]. The cultured human fibroblast strains most active in producing the apoptotic activity contained high numbers of stellate cells expressing α-smooth muscle actin, a myofibroblast marker. The apoptotic activity eluted from gel-filtration columns only in fractions corresponding to proteins. Western blotting of the protein fraction identified immunoreactive angiotensinogen (ANGEN), and two-step RT-PCR revealed expression of ANGEN by HIPF fibroblasts but not by normal human lung fibroblasts. Specific ELISA detected angiotensin II (ANG II) at concentrations sixfold higher in HIPF-conditioned medium than in normal fibroblast-conditioned medium. Pretreatment of the concentrated medium with purified renin plus purified angiotensin-converting enzyme (ACE) further increased the ELISA-detectable ANG II eightfold. Apoptosis of AECs in response to HIPF-conditioned medium was completely abrogated by the ANG II receptor antagonist saralasin (50 μg/ml) or anti-ANG II antibodies. These results identify the protein inducers of AEC apoptosis produced by HIPF fibroblasts as ANGEN and its derivative ANG II. They also suggest a mechanism for AEC death adjacent to HIPF myofibroblasts [B. D. Uhal,, I. Joshi, C. Ramos, A. Pardo, and M. Selman. Am. J. Physiol. 275 ( Lung Cell. Mol. Physiol. 19): L1192–L1199, 1998].


2007 ◽  
Vol 292 (2) ◽  
pp. L529-L536 ◽  
Author(s):  
Amiq Gazdhar ◽  
Patrick Fachinger ◽  
Coretta van Leer ◽  
Jaroslaw Pierog ◽  
Mathias Gugger ◽  
...  

Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-β1 (TGF-β1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-β1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Toshifumi Sugizaki ◽  
Ken-ichiro Tanaka ◽  
Teita Asano ◽  
Daisuke Kobayashi ◽  
Yuuki Hino ◽  
...  

AbstractAlveolar epithelial injury induced by reactive oxygen species (ROS) and abnormal collagen production by activated fibroblasts (myofibroblasts) is involved in the onset and exacerbation of idiopathic pulmonary fibrosis (IPF). Compared with alveolar epithelial cells, lung fibroblasts, especially myofibroblasts, exhibit an apoptosis-resistance phenotype (apoptosis paradox) that appears to be involved in IPF pathogenesis. Thus, we screened for chemicals eliciting preferential cytotoxicity of LL29 cells (lung fibroblasts from an IPF patient) compared with A549 cells (human lung alveolar epithelial cell line) from medicines already in clinical use. We identified idebenone, a synthetic analogue of coenzyme Q10 (CoQ10, an antioxidant) that has been used clinically as a brain metabolic stimulant. Idebenone induced cell growth inhibition and cell death in LL29 cells at a lower concentration than in A549 cells, a feature that was not observed for other antioxidant molecules (such as CoQ10) and two IPF drugs (pirfenidone and nintedanib). Administration of idebenone prevented bleomycin-induced pulmonary fibrosis and increased pulmonary ROS levels. Importantly, idebenone also improved pulmonary fibrosis and lung function when administered after the development of fibrosis, whereas administration of CoQ10 similarly prevented bleomycin-induced pulmonary fibrosis, but had no effect after its development. Administration of idebenone, but not CoQ10, suppressed bleomycin-induced increases in lung myofibroblasts. In vitro, treatment of LL29 cells with idebenone, but not CoQ10, suppressed TGF-β–induced collagen production. These results suggest that in addition to antioxidant activity, idebenone exerts inhibitory activity on the function of lung fibroblasts, with the former activity being preventative and the latter therapeutic for bleomycin-induced fibrosis. Thus, we propose that idebenone may be more therapeutically beneficial for IPF patients than current treatments.


Sign in / Sign up

Export Citation Format

Share Document