scholarly journals A Pilot Study to Assess the Circulating Renin-Angiotensin-System in COVID-19 Acute Respiratory Failure

Author(s):  
D. Clark Files ◽  
Kevin W. Gibbs ◽  
Christopher L. Schaich ◽  
Sean P. Collins ◽  
TanYa M. Gwathmey ◽  
...  

The renin-angiotensin system (RAS) is fundamental to COVID-19 pathobiology, due to the interaction between the SARS-CoV-2 virus and the angiotensin-converting enzyme-2 (ACE2) co-receptor for cellular entry. The prevailing hypothesis is that SARS-CoV-2-ACE2 interactions lead to an imbalance of the RAS, favoring pro-inflammatory Ang II related signaling at the expense of the anti-inflammatory Ang-(1-7) mediated alternative pathway. Indeed, multiple clinical trials targeting this pathway in COVID-19 are underway. Therefore, precise measurement of circulating RAS components is critical to understand the interplay of the RAS on COVID-19 outcomes. Multiple challenges exist in measuring the RAS in COVID-19 including improper patient controls, ex-vivo degradation and low concentrations of angiotensins, and unvalidated laboratory assays. Here, we conducted a prospective pilot study to enroll thirty-three moderate and severe COVID-19 patients and physiologically matched COVID-19 negative controls to quantify the circulating RAS. Our enrollment strategy led to physiologic matching of COVID-19 negative and positive moderate hypoxic respiratory failure cohorts, in contrast to the severe COVID-19 cohort which had increased severity of illness, prolonged ICU stay and increased mortality. Circulating Ang II and Ang-(1-7) levels were measured in the low picomolar (pM) range. We found no significant differences in circulating RAS peptides or peptidases between these three cohorts. The combined moderate and severe COVID-19 positive cohorts demonstrated a mild reduction in ACE activity compared to COVID-19 negative controls (2.2±0.9x105 vs. 2.9±0.8x105 RFU/mL, p=0.03). These methods may be useful in designing larger studies to physiologically match patients and quantify the RAS in COVID-19 RAS augmenting clinical trials.

Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 886 ◽  
Author(s):  
Jan Wysocki ◽  
Arndt Schulze ◽  
Daniel Batlle

ACE2 is a monocarboxypeptidase which generates Angiotensin (1–7) from Angiotensin II (1–8). Attempts to target the kidney Renin Angiotensin System using native ACE2 to treat kidney disease are hampered by its large molecular size, 100 kDa, which precludes its glomerular filtration and subsequent tubular uptake. Here, we show that both urine and kidney lysates are capable of digesting native ACE2 into shorter proteins of ~60–75 kDa and then demonstrate that they are enzymatically very active. We then truncated the native ACE2 by design from the C-terminus to generate two short recombinant (r)ACE2 variants (1-605 and 1-619AA). These two truncates have a molecular size of ~70 kDa, as expected from the amino acid sequence and as shown by Western blot. ACE2 enzyme activity, measured using a specific substrate, was higher than that of the native rACE2 (1-740 AA). When infused to mice with genetic ACE2 deficiency, a single i.v. injection of 1-619 resulted in detectable ACE2 activity in urine, whereas infusion of the native ACE2 did not. Moreover, ACE2 activity was recovered in harvested kidneys from ACE2-deficient mice infused with 1-619, but not in controls (23.1 ± 4.3 RFU/µg creatinine/h and 1.96 ± 0.73 RFU/µg protein/hr, respectively). In addition, the kidneys of ACE2-null mice infused with 1-619 studied ex vivo formed more Ang (1–7) from exogenous Ang II than those infused with vehicle (AUC 8555 ± 1933 vs. 3439 ± 753 ng/mL, respectively, p < 0.05) further demonstrating the functional effect of increasing kidney ACE2 activity after the infusion of our short ACE2 1-619 variant. We conclude that our novel short recombinant ACE2 variants undergo glomerular filtration, which is associated with kidney uptake of enzymatically active proteins that can enhance the formation of Ang (1–7) from Ang II. These small ACE2 variants may offer a potentially useful approach to target kidney RAS overactivity to combat kidney injury.


2017 ◽  
Vol 312 (5) ◽  
pp. H968-H979 ◽  
Author(s):  
Neeru M. Sharma ◽  
Shyam S. Nandi ◽  
Hong Zheng ◽  
Paras K. Mishra ◽  
Kaushik P. Patel

An activated renin-angiotensin system (RAS) within the central nervous system has been implicated in sympathoexcitation during various disease conditions including congestive heart failure (CHF). In particular, activation of the RAS in the paraventricular nucleus (PVN) of the hypothalamus has been recognized to augment sympathoexcitation in CHF. We observed a 2.6-fold increase in angiotensinogen (AGT) in the PVN of CHF. To elucidate the molecular mechanism for increased expression of AGT, we performed in silico analysis of the 3′-untranslated region (3′-UTR) of AGT and found a potential binding site for microRNA (miR)-133a. We hypothesized that decreased miR-133a might contribute to increased AGT in the PVN of CHF rats. Overexpression of miR-133a in NG108 cells resulted in 1.4- and 1.5-fold decreases in AGT and angiotensin type II (ANG II) type 1 receptor (AT1R) mRNA levels, respectively. A luciferase reporter assay performed on NG108 cells confirmed miR-133a binding to the 3′-UTR of AGT. Consistent with these in vitro data, we observed a 1.9-fold decrease in miR-133a expression with a concomitant increase in AGT and AT1R expression within the PVN of CHF rats. Furthermore, restoring the levels of miR-133a within the PVN of CHF rats with viral transduction resulted in a significant reduction of AGT (1.4-fold) and AT1R (1.5-fold) levels with a concomitant decrease in basal renal sympathetic nerve activity (RSNA). Restoration of miR-133a also abrogated the enhanced RSNA responses to microinjected ANG II within the PVN of CHF rats. These results reveal a novel and potentially unique role for miR-133a in the regulation of ANG II within the PVN of CHF rats, which may potentially contribute to the commonly observed sympathoexcitation in CHF. NEW & NOTEWORTHY Angiotensinogen (AGT) expression is upregulated in the paraventricular nucleus of the hypothalamus through posttranscriptional mechanism interceded by microRNA-133a in heart failure. Understanding the mechanism of increased expression of AGT in pathological conditions leading to increased sympathoexcitation may provide the basis for the possible development of new therapeutic agents with enhanced specificity.


2020 ◽  
Vol 71 (6) ◽  
pp. 307-311
Author(s):  
Sorin Ungurianu ◽  
Constantin Trus ◽  
Roxana-Rosmary Enciu

It is already known from a variety of previous reports that an independent brain renin�angiotensin system (RAS) exists, completely separated from the one in the periphery. This independent brain RAS has all the precursors and the enzymatic structures necessary for the generation of the angiotensin peptides. Thus, in the last few years various groups started focusing on the more central effects of less known angiotensins (e.g in comparison with Angiotensin (Ang) II), namely Ang III, Ang IV, Ang-(1�7) or Ang 5-8. One of these newly emerging angiotensins which has become an increased center of interest in many studies is Ang-(1-7), which is a heptapeptide previously described especially for its opposite effects to Ang II, in the peripheral vascular area, but also described for some opposite central functions vs. Ang II. These aspects are completed with the fact that it was recently suggested that the renin�angiotensin system could modulate the oxidative stress metabolism, and also it seems that the manifestations of Angiotensin-(1-7) on the basal oxidative stress status are contradictory, with a variety of reports describing controversial (e.g. both pro-oxidant and antioxidant actions) effects for this heptapeptide. Our results presented here are confirming a possible antioxidant effect of Ang-(1�7) administration on rat, as shown by the increased levels of antioxidant enzymes from the temporal lobe (superoxide dismutase and glutathione peroxidase) and decreased levels of malondialdehyde, as an important lipid peroxidation parameter.


2006 ◽  
Vol 290 (3) ◽  
pp. F710-F719 ◽  
Author(s):  
Max C. Liebau ◽  
D. Lang ◽  
J. Böhm ◽  
N. Endlich ◽  
Martin J. Bek ◽  
...  

Experimental and clinical studies impressively demonstrate that angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) significantly reduce proteinuria and retard progression of glomerular disease. The underlying intraglomerular mechanisms are not yet fully elucidated. As podocyte injury constitutes a critical step in the pathogenesis of glomerular proteinuria, beneficial effects of ACEI and ARB may partially result from interference with a local renin-angiotensin system (RAS) in podocytes. The knowledge of expression and function of a local RAS in podocytes is limited. In this study, we demonstrate functional expression of key components of the RAS in differentiated human podocytes: podocytes express mRNA for angiotensinogen, renin, ACE type 1, and the AT1 and AT2 angiotensin receptor subtypes. In Western blot experiments and immunostainings, expression of the AT1 and AT2 receptor was demonstrated both in differentiated human podocytes and in human kidney cortex. ANG II induced a concentration-dependent increase in cytosolic Ca2+ concentration via AT1 receptors in differentiated human podocytes, whereas it did not increase cAMP. Furthermore, ANG II secretion was detected, which was blocked by neither the ACEI captopril nor the renin inhibitor remikiren nor the chymase inhibitor chymostatin. ANG II secretion of podocytes was not increased by mechanical stress. Finally, ANG II was found to increase staurosporine-induced apoptosis in podocytes. We speculate that ACEI and ARB exert their beneficial effects, in part, by interfering with a local RAS in podocytes. Further experiments are required to identify the underlying molecular mechanism(s) of podocyte protection.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Jorge F Giani ◽  
Tea Djandjoulia ◽  
Nicholas Fetcher ◽  
Sebastien Fuchs ◽  
Dale M Seth ◽  
...  

Introduction: The responses to chronic angiotensin (Ang) II infusions of gene-targeted mice lacking kidney angiotensin-converting enzyme (ACE), in terms of intrarenal Ang II accumulation, hypertension, sodium and water retention are all blunted or absent. The objective of this study was to determine if these reduced responses were associated with changes in the intrarenal renin-angiotensin system (RAS). METHODS: Mice lacking intrarenal ACE (ACE10/10) were generated by targeted homologous recombination placing the expression of ACE only in macrophages. As a result, these mice have normal circulating ACE levels, but no kidney ACE. Wild-type (WT) mice of the same background (C57Bl/J) served as controls. Mice were subjected to sham-operation or subcutaneous infusion of Ang II for two weeks (n=6-10, 400 ng/kg/min via osmotic minipump). Mean arterial pressure (MAP) was followed by telemetry. At the end of the experiment, the kidneys were collected for analysis. Ang II content was measured by RIA. Renal abundance of ACE, angiotensinogen (AGT) and Ang II receptor type 1 (AT1R) were determined by Western Blot in total kidney homogenates. Results: At baseline, the MAP of WT and ACE 10/10 mice was similar 110 ± 4 mmHg vs. 109 ± 3 mmHg respectively (p>0.05). However, when subjected to chronic Ang II infusions, the hypertensive response was blunted in ACE 10/10 mice (129 ± 6 mmHg) vs. WT (146 ± 5 mmHg; P<0.05). Also, intrarenal Ang II accumulation was lower in ACE10/10 mice (724 ± 81 fmol/g) vs. WT (1130 ± 105 fmol/g, p<0.05). In non-treated mice, intrarenal RAS components analysis revealed that the absence of ACE in ACE10/10 mice was accompanied by a significant reduction in AGT (0.41 ± 0.06) and increased AT1R expression (1.32 ± 0.05) when compared to WT (normalized to 1.00, p<0.05 in both instances). Importantly, after chronic Ang II infusions, AGT, ACE and AT1R expression increased in WT (1.36, 1.26 and 1.17 fold increase respectively compared to non-treated WT, p<0.05) but not in the ACE10/10 mice (1.19, 1.06, 0.89 fold increase respectively compared to non-treated ACE10/10, p>0.05). Conclusion: The blunted hypertension and Ang II accumulation of mice devoid of kidney ACE in response to Ang II infusions is associated with a failed induction of renal AGT and the AT1R.


2019 ◽  
Vol 8 (4) ◽  
pp. 419 ◽  
Author(s):  
Stephen Casey ◽  
Robert Schierwagen ◽  
Kai Mak ◽  
Sabine Klein ◽  
Frank Uschner ◽  
...  

Introduction: Recent animal studies have shown that the alternate renin-angiotensin system (RAS) consisting of angiotensin-converting enzyme 2 (ACE2), angiotensin-(1–7) (Ang-(1–7)) and the Mas receptor is upregulated in cirrhosis and contributes to splanchnic vasodilatation and portal hypertension. To determine the potential relevance of these findings to human liver disease, we evaluated its expression and relationship to the patients’ clinical status in subjects with cirrhosis. Methods: Blood sampling from peripheral and central vascular beds was performed intra-operatively for cirrhotic patients at the time of liver transplantation (LT) or trans-jugular intra-hepatic portosystemic shunt (TIPS) procedures to measure angiotensin II (Ang II) and Ang-(1–7) peptide levels and ACE and ACE2 enzyme activity. Relevant clinical and hemodynamic data were recorded pre-operatively for all subjects and peripheral blood sampling was repeated 3 months or later post-operatively. Results: Ang-(1–-7) and ACE2 activity were up-regulated more than twofold in cirrhotic subjects both at the time of LT and TIPS and levels returned to comparable levels as control subjects post-transplantation. Ang-(1–7) levels correlated positively with the degree of liver disease severity, as measured by the model for an end-stage liver disease (MELD) and also with clinical parameters of pathological vasodilatation including cardiac output (CO). There were strong correlations found between the ACE2:ACE and the Ang-(1–7):Ang II ratio highlighting the inter-dependence of the alternate and classical arms of the RAS and thus their potential impact on vascular tone. Conclusions: In human cirrhosis, the alternate RAS is markedly upregulated and the activation of this system is associated strongly with features of the hyperdynamic circulation in advanced human cirrhosis.


1990 ◽  
Vol 259 (2) ◽  
pp. H543-H553
Author(s):  
R. D. Randall ◽  
B. G. Zimmerman

Rabbits were bilaterally nephrectomized for 24 h or received an angiotensin-converting enzyme (ACE) inhibitor chronically (5 days) before an acute experiment. Conductance responses to sympathetic nerve stimulation (SNS) (0.25, 0.75, and 2.25 Hz) and norepinephrine (NE) administration (0.2, 0.6, and 1.8 micrograms ia) were determined from simultaneous blood pressure and iliac blood flow measurements. Conductance responses to SNS were significantly reduced in nephrectomized (44, 26, and 20%) and chronic ACE inhibition (39, 31, and 24%) groups compared with normal controls, whereas conductance responses to NE were unchanged. Continuous infusion of angiotensin II (ANG II) for 24 h restored the depressed responses to SNS in nephrectomized and chronic ACE inhibition groups compared with normal controls but did not change conductance responses to NE. Acute ACE inhibition did not affect the conductance responses to SNS or NE compared with controls. Vascular tissue ACE activity was inhibited to a similar degree (50%) in both acute and chronic ACE inhibition groups compared with normal rabbits. Sodium depletion increased the conductance responses to SNS (30 and 24% at 0.25 and 0.75 Hz, respectively), but responses to NE were not affected. Chronic ACE inhibition significantly attenuated the conductance responses to SNS and slightly decreased responses to NE in sodium-depleted rabbits. Thus, in the anesthetized rabbit, the renin-angiotensin system potentiates the effect of SNS, presumably by ANG II acting at a prejunctional site, and this effect of ANG II appears to be long term in nature. Therefore, the renin-angiotensin system exerts a physiological role in the control of blood pressure in addition to the ability of this system to support arterial pressure in pathophysiological states.


1992 ◽  
Vol 262 (5) ◽  
pp. E651-E657 ◽  
Author(s):  
K. Kohara ◽  
K. B. Brosnihan ◽  
C. M. Ferrario ◽  
A. Milsted

We investigated whether angiotensin (ANG) II has the potential to regulate expression of genes of the renin-angiotensin system (RAS) in peripheral and central tissues. ANG II (0.1 or 6.0 nmol/h) was infused by osmotic minipump into male Sprague-Dawley rats (225-250 g) for 5 days, either intravenously or intracerebroventricularly. We measured angiotensinogen mRNA in liver, adrenal glands, and brain (hypothalamus and lower brain stem), renin mRNA in the kidney, and angiotensin-converting enzyme (ACE) mRNA in the lung and testis by Northern blot analysis. We demonstrated that plasma ANG II increases the levels of liver angiotensinogen mRNA, decreases kidney renin mRNA, and decreases lung ACE mRNA. Intracerebroventricular administration of ANG II resulted in a different pattern of responses of the peripheral RAS components. Liver angiotensinogen mRNA was increased, and kidney renin mRNA was decreased by both doses of ANG II, whereas lung ACE mRNA remained unresponsive at either dose. Centrally mediated influences of ANG II are most likely indirect since plasma ANG II concentration was not changed. This study has revealed that ANG II has profound diverse effects that influence the regulation of its formation. Further, results indicate that genes of the RAS responded to exogenous ANG II in both tissue- and route-specific ways.


Sign in / Sign up

Export Citation Format

Share Document