Interferon-γ: a key contributor to hyperoxia-induced lung injury in mice

2004 ◽  
Vol 287 (5) ◽  
pp. L1042-L1047 ◽  
Author(s):  
Mitsuhiro Yamada ◽  
Hiroshi Kubo ◽  
Seiichi Kobayashi ◽  
Kota Ishizawa ◽  
Hidetada Sasaki

Hyperoxia-induced lung injury complicates the care of many critically ill patients who receive supplemental oxygen therapy. Hyperoxic injury to lung tissues is mediated by reactive oxygen species, inflammatory cell activation, and release of cytotoxic cytokines. IFN-γ is known to be induced in lungs exposed to high concentrations of oxygen; however, its contribution to hyperoxia-induced lung injury remains unclear. To determine whether IFN-γ contributes to hyperoxia-induced lung injury, we first used anti-mouse IFN-γ antibody to blockade IFN-γ activity. Administration of anti-mouse IFN-γ antibody inhibited hyperoxia-induced increases in pulmonary alveolar permeability and neutrophil migration into lung air spaces. To confirm that IFN-γ contributes to hyperoxic lung injury, we then simultaneously exposed IFN-γ-deficient (IFN-γ−/−) mice and wild-type mice to hyperoxia. In the early phase of hyperoxia, permeability changes and neutrophil migration were significantly reduced in IFN-γ−/− mice compared with wild-type mice, although the differences in permeability changes and neutrophil migration between IFN-γ−/− mice and wild-type mice were not significant in the late phase of hyperoxia. The concentrations of IL-12 and IL-18, two cytokines that play a role in IFN-γ induction, significantly increased in bronchoalveolar lavage fluid after exposure to hyperoxia in both IFN-γ−/− mice and wild-type mice, suggesting that hyperoxia initiates upstream events that result in IFN-γ production. Although there was no significant difference in overall survival, IFN-γ−/− mice had a better early survival rate than did the wild-type mice. Therefore, these data strongly suggest that IFN-γ is a key molecular contributor to hyperoxia-induced lung injury.

2003 ◽  
Vol 285 (6) ◽  
pp. L1255-L1262 ◽  
Author(s):  
Michael J. Segel ◽  
Gabriel Izbicki ◽  
Pazit Y. Cohen ◽  
Reuven Or ◽  
Thomas G. Christensen ◽  
...  

IFN-γ production is upregulated in lung cells (LC) of bleomycin-treated C57BL/6 mice. The present study characterizes the time course, cellular source, and regulation of IFN-γ expression in bleomycin-induced lung injury. IFN-γ mRNA in LC from bleomycin-treated mice peaked 3 days after intratracheal instillation. IFN-γ protein levels were increased at 6 days, as was the percentage of LC expressing IFN-γ. CD4+, CD8+, and natural killer cells each contributed significantly to IFN-γ production. IL-12 mRNA levels were increased at 1 day in LC of bleomycin-treated mice. Anti-IL-12 and anti-IL-18 antibodies decreased IFN-γ production by these cells. To define the role of endogenous IFN-γ in the evolution of bleomycin lung injury, we compared the effect of bleomycin in mice with a targeted knockout mutation of the IFN-γ gene (IFN-γ knockout) and wild-type mice. At 14 days after intratracheal bleomycin, total bronchoalveolar lavage cell counts and lung hydroxyproline were decreased in IFN-γ knockouts compared with wild-type animals. There was no difference in morphometric parameters of fibrosis. Our data show that enhanced IFN-γ production in the lungs of bleomycin-treated mice is at least partly IL-12 and IL-18 dependent. Absence of IFN-γ in IFN-γ knockout mice does not increase pulmonary fibrosis. Endogenous IFN-γ may play a proinflammatory or profibrotic role in bleomycin-induced lung fibrosis.


2001 ◽  
Vol 280 (1) ◽  
pp. L69-L78 ◽  
Author(s):  
Hagir B. Suliman ◽  
Lisa K. Ryan ◽  
Lisa Bishop ◽  
Rodney J. Folz

Reactive oxygen and nitrogen species such as superoxide and nitric oxide are released into the extracellular spaces by inflammatory and airway epithelial cells. These molecules may exacerbate lung injury after influenza virus pneumonia. We hypothesized that enhanced expression of extracellular superoxide dismutase (EC SOD) in mouse airways would attenuate the pathological effects of influenza pneumonia. We compared the pathogenic effects of a nonlethal primary infection with mouse-adapted Hong Kong influenza A/68 virus in transgenic (TG) EC SOD mice versus non-TG (wild-type) littermates. Compared with wild-type mice, EC SOD TG mice showed less lung injury and inflammation as measured by significant blunting of interferon-γ induction, reduced cell count and total protein in bronchoalveolar lavage fluid, reduced levels of lung nitrite/nitrate nitrotyrosine, and markedly reduced lung pathology. These results demonstrate that enhancing EC SOD in the conducting and distal airways of the lung minimizes influenza-induced lung injury by both ameliorating inflammation and attenuating oxidative stress.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2343-2343
Author(s):  
Ying Lu ◽  
Jian-Ming Li ◽  
Wayne Harris ◽  
Edmund Waller

Abstract Both host and donor dendritic cells (DCs) have been shown to play a critical role in regulating graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after MHC-mismatched bone marrow transplantation (BMT) (Shlomchik et al. Science 1999, Reddy et al. Nat Med 2005). In contrast to host DCs, much less is known about the precise mechanisms donor DCs may use to modulate donor T-cell activation and GVL activity. A clinical report has suggested an association between the number of donor plasmacytoid DC in the graft and leukemia relapses after allogeneic BMT (Waller et al. Blood 2001). Using allogeneic MHC-mismatched hematopoietic stem cell transplant (HSCT) (C57BL/6→B10.BR) in mice bearing the T lymphoblastic leukemia LBRM, we have previously reported that recipients transplanted with purified CD11b− DC in combination with purified HSC and T-cells had 45% increased long-term leukemia-free-survival, higher numbers of interferon-γ (IFN-γ) producing donor T-cells as well as higher levels of serum IFN-γ (Li et al. Blood 2007). The aim of the present work is to further define whether production of IFN-γ by donor T-cells is necessary for the augmentation of GVL effect seen with CD11b− donor DC and define the mechanism that donor CD11b− DC can augment GVL of donor T-cells without causing fatal GVHD. To evaluate the role for IFN-γ produced by donor T-cells, we used IFN-γ knockout (KO) mice as donors in the C57BL/6→B10.BR transplant model. Recipients of IFN-γ KO donor T-cells in combination with wild-type FACS-purified HSC and CD11b− DC died rapidly with 0% survival at day 80 compared with 65% survival among tumor-bearing recipients of donor CD11b− with wild-type HSC and T-cells and 75% survival in mice transplanted with wild-type cells in the absence of LBRM. Moreover, the addition of donor CD11b− DC to IFN-γ KO donor T-cells did not lead to further augmentation of GVHD. These data supported a role for donor T-cell-derived IFN-γ in the enhanced GVL activity seen among recipients of donor CD11b− DC,but did not explain the lack of increased GVHD. As a potent pro-inflammatory cytokine initiating immune response in GVHD, IFN-γ has also been demonstrated to show a suppressive effect during GVHD as a result of IFN-γ-inducible indoleamine-2,3-dioxygenase(IDO) gene expression. CD11b− DCs were freshly isolated from bone marrow of donor C57BL/6 mice, exposed to 100ng/ml IFN-γ for 18 hours, and the IDO expression was measured by intracellular staining. The results showed that following IFN-γ treatment, IDO levels of CD11b− DCs were up-regulated. Furthermore, in vitro co-culture of FACS-purified CD11b− DC with syngeneic T-cells in the presence of allogeneic antigen also demonstrated increased IDO levels on the co-cultured DCs. Taken together, our data support a model in which donor CD11b− DCs initially induce Th1 polarization of activated donor T-cells that secret high levels of IFN-γ in the lymph node microenvironment. High local levels of IFN-γ subsequently induce IDO expression in DC, resulting in down-modulation of T-cell allo-reactivity and GVHD. Thus, IFN-γ-induced IDO expression on CD11b− donor DCs appears to be a critical downstream event that inhibits continued T-cell activation and leads to less severe GVHD.


2021 ◽  
Author(s):  
Irina N. Baranova ◽  
Alexander V. Bocharov ◽  
Tatyana G. Vishnyakova ◽  
Zhigang Chen ◽  
Anna A. Birukova ◽  
...  

Recent studies suggest an anti-inflammatory protective role for class B scavenger receptor BI (SR-BI) in endotoxin-induced inflammation and sepsis. Other data, including ours, provide evidence for an alternative role of SR-BI, facilitating bacterial and endotoxin uptake, and contributing to inflammation and bacterial infection. Enhanced endotoxin susceptibility of SR-BI deficient mice due to their anti-inflammatory glucocorticoid deficiency complicates understanding SR-BI’s role in endotoxemia/sepsis, calling for use of alternative models. In this study, using hSR-BI and hSR-BII transgenic mice, we found that SR-BI and to a lesser extent its splicing variant SR-BII, protects against LPS-induced lung damage. At 20 hours after intratracheal LPS instillation the extent of pulmonary inflammation and vascular leakage was significantly lower in hSR-BI and hSR-BII transgenic mice compared to wild type mice. Higher bronchoalveolar lavage fluid (BALF) inflammatory cell count and protein content as well as lung tissue neutrophil infiltration found in wild type mice was associated with markedly (2-3 times) increased pro-inflammatory cytokine production as compared to transgenic mice following LPS administration. Markedly lower endotoxin levels detected in BALF of transgenic vs. wild type mice along with the significantly increased BODIPY-LPS uptake observed in lungs of hSR-BI and hSR-BII mice 20 hours after the IT LPS injection suggest that hSR-BI and hSR-BII-mediated enhanced LPS clearance in the airways could represent the mechanism of their protective role against LPS-induced acute lung injury.


2003 ◽  
Vol 284 (4) ◽  
pp. G629-G637 ◽  
Author(s):  
Hua Yang ◽  
Yongyi Fan ◽  
Daniel H. Teitelbaum

Total parenteral nutrition (TPN) results in an increase in intraepithelial lymphocyte (IEL)-derived interferon-γ (IFN-γ) expression as well as an increase in epithelial cell (EC) apoptosis. This study examined the role that IEL-derived IFN-γ has in the increase in EC apoptosis. Mice received either TPN or oral feedings for 7 days. Small bowel EC apoptosis significantly rose in mice receiving TPN. The administration of TPN also significantly increased IEL-derived IFN-γ and Fas ligand (FasL) expression. EC apoptosis in IFN-γ knockout (IFNKO) mice that received TPN was significantly lower than in wild-type TPN mice. Sensitivity of EC to Fas-mediated apoptosis in IFNKO mice was significantly lower than in wild-type TPN mice. Apoptosis in Fas-deficient and FasL-deficient mice that received TPN was significantly lower than in wild-type mice that received TPN. The TPN-induced increase in IFN-γ expression appears to result in an increase in Fas-L expression and EC sensitivity to Fas, with a resultant increase in EC apoptosis. This may well be one of the mediators of increased EC apoptosis observed with TPN administration.


1997 ◽  
Vol 186 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Andrea M. Cooper ◽  
Jeanne Magram ◽  
Jessica Ferrante ◽  
Ian M. Orme

Immunity to Mycobacterium tuberculosis infection is associated with the emergence of protective CD4 T cells that secrete cytokines, resulting in activation of macrophages and the recruitment of monocytes to initiate granuloma formation. The cytokine-mediating macrophage activation is interferon-γ (IFN-γ), which is largely dependent on interleukin-12 (IL-12) for its induction. To address the role of IL-12 in immunity to tuberculosis, IL-12 p40−/− mice were infected with M. tuberculosis and their capacity to control bacterial growth and other characteristics of their immune response were determined. The IL-12 p40−/− mice were unable to control bacterial growth and this appeared to be linked to the absence of both innate and acquired sources of IFN-γ. T cell activation as measured by delayed type hypersensitivity and lymphocyte accumulation at the site of infection were both markedly reduced in the IL-12 p40−/− mice. Therefore, IL-12 is essential to the generation of a protective immune response to M. tuberculosis, with its main functions being the induction of the expression of IFN-γ and the activation of antigen-specific lymphocytes capable of creating a protective granuloma.


Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1782-1789 ◽  
Author(s):  
R.E. Curiel ◽  
C.S. Garcia ◽  
S. Rottschafer ◽  
M.C. Bosco ◽  
I. Espinoza-Delgado

B7-2 is a costimulatory molecule expressed on professional antigen-presenting cells that provides T cells with a critical signal resulting in T-cell activation. Interferon-γ (IFN-γ) enhances B7-2 protein expression in monocytic cells. However, the molecular mechanisms controlling the enhanced expression of B7-2 are poorly understood. Northern blot and flow cytometry analysis revealed that human monocytes and the human monocytic cell line MonoMac6 (MM6) constitutively expressed B7-2 mRNA and protein and IFN-γ treatment further enhanced the expression of both molecules. The ability of IFN-γ to enhance B7-2 mRNA was evident at the dose of 31 U/mL and reached plateau levels at 500 U/mL. The effects of IFN-γ on B7-2 mRNA expression were time dependent and occurred within 3 hours of treatment and increased through 24 hours. In vitro transcription assays and mRNA stability experiments showed that IFN-γ increases both transcriptional activity and the stability of B7-2 mRNA. Treatment of MM6 cells with cycloheximide showed that de novo protein synthesis was not required for the IFN-γ–enhanced expression of B7-2 mRNA. Overall, these studies show for the first time that IFN-γ–enhanced expression of B7-2 protein in human monocytic cells is controlled at the gene level through a dual mechanism involving transcriptional and posttranscriptional mechanisms.


2017 ◽  
Vol 44 (4) ◽  
pp. 1526-1536 ◽  
Author(s):  
Wenlin Tai ◽  
Yiheng Xu ◽  
Jiawei Ding ◽  
Hanxin Wu ◽  
Ming Du ◽  
...  

Background/Aims: Acute lung injury (ALI) remains a severe disease that threatens human life around the world. To decrease the mortality of ALI and improve ALI treatment efficacy, the development of more ALI treatments is urgently needed. Whether fibrocytes directly participate in ALI has not been studied. Therefore, a mouse model of ALI was induced with lipopolysaccharide (LPS). Methods: Fibrocytes were harvested from peripheral blood mononuclear cells of bleomycin mice and identified by using flow cytometry to detect the expression of molecular makers. The fibrocytes were injected for the treatment of acute lung injury mice. The curative effects were evaluated by using ELISA to determine the cytokines (including TNF-α, IL-6 and IFN-γ) concentrations in bronchoalveolar lavage fluid (BALF) supernatant. Results: The concentrations of cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interferon-γ (IFN-γ) were increased in mice with ALI induced with LPS. The concentrations of TNF-α, IL-6, and IFN-γ as well as their mRNA and protein expression levels were decreased by administration of fibrocytes. The effect of fibrocytes in ameliorating ALI was time dependent. LPS treatment induced an increase in myeloperoxidase (MPO) activity, whereas the fibrocyte treatment caused inhibition of MPO activity as well as expression of the neutrophil-chemoattractant chemokine macrophage inflammatory protein 2 (MIP-2). Conclusion: Taken together, these data suggest that fibrocytes ameliorated ALI by suppressing inflammatory cytokines and chemokines as well as by decreasing the accumulation of neutrophils in the lung.


Gut ◽  
1998 ◽  
Vol 43 (4) ◽  
pp. 499-505 ◽  
Author(s):  
A Stallmach ◽  
F Schäfer ◽  
S Hoffmann ◽  
S Weber ◽  
I Müller-Molaian ◽  
...  

Background—Immunoregulatory abnormalities of T cells might be of importance in the pathogenesis of pouchitis after ileoanal pouch anastomosis (IAP).Aims—To characterise T cell subsets, their state of activation, and production of cytokines in inflamed and non-inflamed pouches in patients with ulcerative colitis (UC) and familial adenomatous polyposis (FAP). The influence of T cell activation on mucosal transformation was also studied.Patients—Mucosal biopsy specimens were taken from 42 patients with IAP (33 with UC and nine with FAP).Methods—Mononuclear cells were isolated by standard techniques and characterised by three colour flow cytometry. Interferon γ (IFN-γ) production was studied using the ELISPOT technique.Results—In patients with UC with pouchitis there was a significant increase in the CD4:CD8 ratio, expression of activation markers on CD3+ cells, and number of IFNγ producing mononuclear cells compared with patients with UC without pouchitis (CD4:CD8 ratio 1.3 (range 0.7–2.7) versus 0.6 (0.1–1.0), p=0.012). In addition, a positive correlation between increased crypt depth and the number of CD4+ cells (r=0.57) was shown.Conclusion—The observed increase in activated mucosal CD4+ T cells and IFN-γ production might lead to mucosal destruction and crypt hyperplasia as seen in pouchitis.


2016 ◽  
Vol 213 (4) ◽  
pp. 585-603 ◽  
Author(s):  
David Langlais ◽  
Luis B. Barreiro ◽  
Philippe Gros

IRF8 and IRF1 are transcriptional regulators that play critical roles in the development and function of myeloid cells, including activation of macrophages by proinflammatory signals such as interferon-γ (IFN-γ). Loss of IRF8 or IRF1 function causes severe susceptibility to infections in mice and in humans. We used chromatin immunoprecipitation sequencing and RNA sequencing in wild type and in IRF8 and IRF1 mutant primary macrophages to systematically catalog all of the genes bound by (cistromes) and transcriptionally activated by (regulomes) IRF8, IRF1, PU.1, and STAT1, including modulation of epigenetic histone marks. Of the seven binding combinations identified, two (cluster 1 [IRF8/IRF1/STAT1/PU.1] and cluster 5 [IRF1/STAT1/PU.1]) were found to have a major role in controlling macrophage transcriptional programs both at the basal level and after IFN-γ activation. They direct the expression of a set of genes, the IRF8/IRF1 regulome, that play critical roles in host inflammatory and antimicrobial defenses in mouse models of neuroinflammation and of pulmonary tuberculosis, respectively. In addition, this IRF8/IRF1 regulome is enriched for genes mutated in human primary immunodeficiencies and with loci associated with several inflammatory diseases in humans.


Sign in / Sign up

Export Citation Format

Share Document