Metabolic fate of yolk fatty acids in the developing king penguin embryo

2003 ◽  
Vol 285 (4) ◽  
pp. R850-R861 ◽  
Author(s):  
René Groscolas ◽  
Françoise Fréchard ◽  
Frédéric Decrock ◽  
Brian K. Speake

This study examines the metabolic fate of total and individual yolk fatty acids (FA) during the embryonic development of the king penguin, a seabird characterized by prolonged incubation (53 days) and hatching (3 days) periods, and a high n-3/n-6 polyunsaturated FA ratio in the egg. Of the ∼15 g of total FA initially present in the egg lipid, 87% was transferred to the embryo by the time of hatching, the remaining 13% being present in the internalized yolk sac of the chick. During the whole incubation, 83% of the transferred FA was oxidized for energy, with only 17% incorporated into embryo lipids. Prehatching ( days 0-49), the fat stores (triacylglycerol) accounted for 58% of the total FA incorporated into embryo lipid. During hatching ( days 49-53), 40% of the FA of the fat stores was mobilized, the mobilization of individual FA being nonselective. At hatch, 53% of the arachidonic acid (20:4n-6) of the initial yolk had been incorporated into embryo lipid compared with only 15% of the total FA and 17-24% of the various n-3 polyunsaturated FA. Similarly, only 32% of the yolk's initial content of 20:4n-6 was oxidized for energy during development compared with 72% of the total FA and 58-66% of the n-3 polyunsaturated FA. The high partitioning of yolk FA toward oxidization and the intense mobilization of fat store FA during hatching most likely reflect the high energy cost of the long incubation and hatching periods of the king penguin. The preferential partitioning of 20:4n-6 into the structural lipid of the embryo in the face of its low content in the yolk may reflect the important roles of this FA in tissue function.

PEDIATRICS ◽  
1965 ◽  
Vol 36 (6) ◽  
pp. 940-950
Author(s):  
Allen Root

Growth hormone influences protein, fat, carbohydrate, and mineral metabolism. It promotes nitrogen retention, growth of cartilage, transportation of amino acids through the cell wall, and incorporation of amino acids into protein. This factor mobilizes free fatty acids from adipose tissue and increases the serum concentration of these substances; long-term administration of this hormone is followed by depletion of body fat stores and inhibition of fatty acid synthesis. In diabetic subjects growth hormone administration is followed by hyperglycemia, glycosuria, and ketosis; its effect on carbohydrate metabolism in normal subjcets is more subtle. Sodium, potassium, and inorganic phosphate are retained following the administration of growth hormone. Hypercalciuria also accompanies such treatment, an effect mediated through the parathyroid glands. Human growth hormone may be detected in the serum through the use of the radioimmunoassay. The hypothalamus is intimately involved with the control of the secretion and release of growth hormone from the pituitary. There is a correlation between the availability of glucose for metabolism and the plasma concentration of growth hormone; when glucose is unavailable growth hormone is released in order to provide a substitute source of energy, fatty acids. The administration of growth hormone to the patient with hypopituitarism is followed by growth in many instances, but it has not usually been effective in promoting growth in individuals with other abnormalities. Acquired resistance to the effect of growth hormone is accompanied by the development of antibodies directed against this protein.


Author(s):  
Chuanqi Wang ◽  
Junjie Qiao ◽  
Yijia Song ◽  
Qi Yang ◽  
Dazhi Wang ◽  
...  

Abstract Nitric oxide (NO) is one of the most crucial products in the plasma-based nitrogen fixation process. In this work, in-situ measurements were performed for quantifying the NO synthesis spatially in a warm air glow discharge, through the method of Mid-infrared quantum cascade laser absorption spectroscopy (QCL-AS). Two ro-vibrational transitions at 1900.076 cm-1 and 1900.517 cm-1 of the ground-state NO(X) were probed sensitively by the help of the wavelength modulation spectroscopy (WMS) approach to increase the signal/noise (S/N) level. The results show a decline trend of NO synthesis rate along the discharge channel from the cathode to the anode. However, from the point of energy efficiency, the cathode region is of significantly low energy efficiency of NO production. Severe disproportionality was found for the high energy consumption but low NO production in the region of cathode area, compared to that in the positive column zone. Further analysis demonstrates the high energy cost of NO production in the cathode region, is ascribed to the extremely high reduced electric field E/N therein not selectively preferable for the processes of vibrational excitation or dissociation of N2 and O2 molecules. This drags down the overall energy efficiency of NO synthesis by this typical warm air glow discharge, particularly for the ones with short electrode gaps. Limitations of further improving the energy cost of NO synthesis by variations of the discharge operation conditions, such as discharge current or airflow rate, imply other effective manners able to tune the energy delivery selectively to the NO formation process, are sorely needed.


1991 ◽  
Vol 160 (1) ◽  
pp. 263-283 ◽  
Author(s):  
H. Hoppeler ◽  
R. Billeter

The structural conditions relevant for metabolite exchange in anaerobic and aerobic work conditions in muscle tissue are reviewed. High-intensity non-steady-state exercise is supported by the phosphocreatine pool, which serves as a shuttle for high-energy phosphates produced by glycolysis and by aerobic metabolism. This is achieved through the intermediary of a topologically organized creatine kinase isozyme system. The muscle capillary network supplies substrate and environmental oxygen to the mitochondria. The network is quantitatively matched to the muscle oxidative capacity, determined structurally by mitochondrial volume. Capillary hematocrit, erythrocyte spacing and oxygen saturation of myoglobin are critical variables for oxygen release from microvessels. Myoglobin greatly helps intracellular oxygen transfer as, under aerobic work conditions, it keeps intracellular oxygen tension low and uniform in the muscle fibers. During sustained submaximal work, muscle cells are fueled by both endogenous (triglycerides and glycogen) and circulatory (lactate, glucose and fatty acids) substrates. A lactate shuttle in which lactate may move through the circulation, as well as directly from fiber to fiber, provides many of the carbohydrate-derived carbon skeletons for terminal oxidation. Glucose is taken up from the interstitial space by facilitated diffusion, mostly mediated by a glucose transporter (GLUT4) that is translocated from an intracellular location to the sarcolemma by activity and insulin. Extramyocellular transport of fatty acids is mediated by albumin, while fatty-acid-binding proteins are held responsible for intracellular fatty acid transport.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Na Wang ◽  
Yuanyuan Cai ◽  
Junsong Fu ◽  
Jie Xu

The rapid development of Internet of Medical Things (IoMT) is remarkable. However, IoMT faces many problems including privacy disclosure, long delay of service orders, low retrieval efficiency of medical data, and high energy cost of fog computing. For these, this paper proposes a data privacy protection and efficient retrieval scheme for IoMT based on low-cost fog computing. First, a fog computing system is located between a cloud server and medical workers, for processing data retrieval requests of medical workers and orders for controlling medical devices. Simultaneously, it preprocesses physiological data of patients uploaded by IoMT, collates them into various data sets, and transmits them to medical institutions in this way. It makes the entire execution process of low latency and efficient. Second, multidimensional physiological data are of great value, and we use ciphertext retrieval to protect privacy of patient data in this paper. In addition, this paper uses range tree to build an index for storing physiological data vectors, and meanwhile a range retrieval method is also proposed to improve data search efficiency. Finally, bat algorithm (BA) is designed to allocate cost on a fog server group for significant energy cost reduction. Extensive experiments are conducted to demonstrate the efficiency of the proposed scheme.


2018 ◽  
Vol 1 (2) ◽  
pp. 93-96 ◽  
Author(s):  
Tünde Kovács ◽  
Zoltán Nyikes ◽  
Lucia Figuli

Abstract In the current century, building protection is very important in the face of terrorist attacks. The old buildings in Europe are not sufficiently resilient to the loads produced by blasts. We still do not fully understand the effects of different explosives on buildings and human bodies. [1–3] Computing blast loads are different from that of traditional loads and the material selection rules for this type of impact load are diverse. Historical and old buildings cannot be protected simply by new walls and fences. New ways need to be found to improve a building’s resistance to the effects of a blast. It requires sufficiently thin yet strong retrofitted materials in order to reinforce a building’s walls [4–6].


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1379
Author(s):  
Robert Kupczyński ◽  
Antoni Szumny ◽  
Katarzyna Wujcikowska ◽  
Natalia Pachura

The aim of this paper is to review and systematize the current state of knowledge on glycol metabolism in cattle. Glycerol, derived from biodiesel production, must be purified in order to be a useful product for feeding livestock. The use of glycerol in the feeding of ruminants can be justified for several reasons: (i) it is a source of energy in the ration, (ii) it is a glucogenic precursor, and (iii) it may have an effect on milk composition. The high energy value of glycerol provides the opportunity to use this raw material as a partial grain substitute in cattle feed rations. Dietary supplementation of glycerol is associated with increased propionate, butyrate, valerate, and isovalerate concentrations in the rumen. Glycerol can be used at up to 10%–15% of the dietary dry matter (DM) and is well-established as a treatment for ketosis in cows. Glycerol increases plasma glucose and may reduce non-esterified fatty acids and β-hydroxybutyrate levels. The use of glycerol does not have a clear effect on DM intake, milk yield, or milk composition. However, some authors have reported an increase in milk yield after glycerol supplementation associated with decreased milk fat concentration. It is also possible that the concentration in the milk of odd-chain fatty acids and cis-9, trans-11 conjugated linoleic acid may increase after glycerol application.


2020 ◽  
pp. 1042-1057
Author(s):  
Xiaojing Hou ◽  
Guozeng Zhao

With the wide application of the cloud computing, the contradiction between high energy cost and low efficiency becomes increasingly prominent. In this article, to solve the problem of energy consumption, a resource scheduling and load balancing fusion algorithm with deep learning strategy is presented. Compared with the corresponding evolutionary algorithms, the proposed algorithm can enhance the diversity of the population, avoid the prematurity to some extent, and have a faster convergence speed. The experimental results show that the proposed algorithm has the most optimal ability of reducing energy consumption of data centers.


Open Biology ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 190049 ◽  
Author(s):  
Yating Hu ◽  
Zhiwei Zhu ◽  
Jens Nielsen ◽  
Verena Siewers

The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, in particular ethanol, a biofuel produced in large quantities. With a need for high-energy-density fuels for jets and heavy trucks, there is, however, much interest in the biobased production of hydrocarbons that can be derived from fatty acids. Fatty acids also serve as precursors to a number of oleochemicals and hence provide interesting platform chemicals. Here, we review the recent strategies applied to metabolic engineering of S. cerevisiae for the production of fatty acid-derived biofuels and for improvement of the titre, rate and yield (TRY). This includes, for instance, redirection of the flux towards fatty acids through engineering of the central carbon metabolism, balancing the redox power and varying the chain length of fatty acids by enzyme engineering. We also discuss the challenges that currently hinder further TRY improvements and the potential solutions in order to meet the requirements for commercial application.


2019 ◽  
Vol 42 (4) ◽  
pp. 239-241
Author(s):  
Anusha Mishra ◽  
Laura Lee Colgin

Sign in / Sign up

Export Citation Format

Share Document