Exercise-rest cycles do not alter local and whole body heat loss responses

2011 ◽  
Vol 300 (4) ◽  
pp. R958-R968 ◽  
Author(s):  
Daniel Gagnon ◽  
Glen P. Kenny

Previous studies have suggested that greater core temperatures during intermittent exercise (Ex) are due to attenuated sweating [upper back sweat rate (SR)] and skin blood flow (SkBF) responses. We evaluated the hypothesis that heat loss is not altered during exercise-rest cycles (ER). Ten male participants randomly performed four 120-min trials: 1) 60-min Ex and 60-min recovery (60ER); 2) 3 × 20-min Ex separated by 20-min recoveries (20ER); 3) 6 × 10-min Ex separated by 10-min recoveries (10ER), or 4) 12 × 5-min Ex separated by 5-min recoveries (5ER). Exercise was performed at a workload of 130 W at 35°C. Whole body heat exchange was determined by direct calorimetry. Core temperature, SR (by ventilated capsule), and SkBF (by laser-doppler) were measured continuously. Evaporative heat loss (EHL) progressively increased with each ER, such that it was significantly greater ( P ≤ 0.05) at the end of the last compared with the first Ex for 5ER (299 ± 39 vs. 440 ± 41 W), 10ER (425 ± 51 vs. 519 ± 45 W), and 20ER (515 ± 63 vs. 575 ± 74 W). The slope of the EHL response against esophageal temperature significantly increased from the first to the last Ex within the 10ER (376 ± 56 vs. 445 ± 89 W/°C, P ≤ 0.05) and 20ER (535 ± 85 vs. 588 ± 28 W/°C, P ≤ 0.05) conditions, but not during 5ER (296 ± 96 W/°C vs. 278 ± 95 W/°C, P = 0.237). In contrast, the slope of the SkBF response against esophageal temperature did not significantly change from the first to the last Ex (5ER: 51 ± 23 vs. 54 ± 19%/°C, P = 0.848; 10ER: 53 ± 8 vs. 56 ± 21%/°C, P = 0.786; 20ER: 44 ± 20 vs. 50 ± 27%/°C, P = 0.432). Overall, no differences in body heat content and core temperature were observed. These results suggest that altered local and whole body heat loss responses do not explain the previously observed greater core temperatures during intermittent exercise.

2013 ◽  
Vol 305 (6) ◽  
pp. R619-R629 ◽  
Author(s):  
Joanie Larose ◽  
Heather E. Wright ◽  
Jill Stapleton ◽  
Ronald J. Sigal ◽  
Pierre Boulay ◽  
...  

Studies in young adults show that a greater proportion of heat is gained shortly following the start of exercise and that temporal changes in whole body heat loss during intermittent exercise have a pronounced effect on body heat storage. The consequences of short-duration intermittent exercise on heat storage with aging are unclear. We compared evaporative heat loss (H E) and changes in body heat content (ΔHb) between young (20–30 yr), middle-aged (40–45 yr), and older males (60–70 yr) of similar body mass and surface area, during successive exercise (4 × 15 min) and recovery periods (4 × 15 min) at a fixed rate of heat production (400 W) and under fixed environmental conditions (35°C/20% relative humidity). H E was lower in older males vs. young males during each exercise (Ex1: 283 ± 10 vs. 332 ± 11 kJ, Ex2: 334 ± 10 vs. 379 ± 5 kJ, Ex3: 347 ± 11 vs. 392 ± 5 kJ, and Ex4: 347 ± 10 vs. 387 ± 5 kJ, all P < 0.02), whereas H E in middle-aged males was intermediate to that measured in young and older adults (Ex1: 314 ± 13, Ex2: 355 ± 13, Ex3: 371 ± 13, and Ex4: 365 ± 8 kJ). H E was not significantly different between groups during the recovery periods. The net effect over 2 h was a greater ΔHb in older (267 ± 33 kJ; P = 0.016) and middle-aged adults (245 ± 16 kJ; P = 0.073) relative to younger counterparts (164 ± 20 kJ). As a result of a reduced capacity to dissipate heat during exercise, which was not compensated by a sufficiently greater rate of heat loss during recovery, both older and middle-aged males had a progressively greater rate of heat storage compared with young males over 2 h of intermittent exercise.


2008 ◽  
Vol 294 (5) ◽  
pp. R1586-R1592 ◽  
Author(s):  
Ollie Jay ◽  
Daniel Gagnon ◽  
Michel B. DuCharme ◽  
Paul Webb ◽  
Francis D. Reardon ◽  
...  

Previous studies report greater postexercise heat loss responses during active recovery relative to inactive recovery despite similar core temperatures between conditions. Differences have been ascribed to nonthermal factors influencing heat loss response control since elevations in metabolism during active recovery are assumed to be insufficient to change core temperature and modify heat loss responses. However, from a heat balance perspective, different rates of total heat loss with corresponding rates of metabolism are possible at any core temperature. Seven male volunteers cycled at 75% of V̇o2peak in the Snellen whole body air calorimeter regulated at 25.0°C, 30% relative humidity (RH), for 15 min followed by 30 min of active (AR) or inactive (IR) recovery. Relative to IR, a greater rate of metabolic heat production (Ṁ − Ẇ) during AR was paralleled by a greater rate of total heat loss (ḢL) and a greater local sweat rate, despite similar esophageal temperatures between conditions. At end-recovery, rate of body heat storage, that is, [(Ṁ − Ẇ) − ḢL] approached zero similarly in both conditions, with Ṁ − Ẇ and ḢL elevated during AR by 91 ± 26 W and 93 ± 25 W, respectively. Despite a higher Ṁ − Ẇ during AR, change in body heat content from calorimetry was similar between conditions due to a slower relative decrease in ḢL during AR, suggesting an influence of nonthermal factors. In conclusion, different levels of heat loss are possible at similar core temperatures during recovery modes of different metabolic rates. Evidence for nonthermal influences upon heat loss responses must therefore be sought after accounting for differences in heat production.


2014 ◽  
Vol 39 (3) ◽  
pp. 292-298 ◽  
Author(s):  
Jill M. Stapleton ◽  
Joanie Larose ◽  
Christina Simpson ◽  
Andreas D. Flouris ◽  
Ronald J. Sigal ◽  
...  

Heat waves are the cause of many preventable deaths around the world, especially among older adults and in countries with more temperate climates. In the present study, we examined the effects of age on whole-body heat loss and heat storage during passive exposure to environmental conditions representative of the upper temperature extremes experienced in Canada. Direct and indirect calorimetry measured whole-body evaporative heat loss and dry heat exchange, as well as the change in body heat content. Twelve younger (21 ± 3 years) and 12 older (65 ± 5 years) adults with similar body weight (younger: 72.0 ± 4.4 kg; older: 80.1 ± 4.2 kg) and body surface area (younger: 1.8 ± 0.1 m2; older: 2.0 ± 0.1 m2) rested for 2 h in a hot–dry [36.5 °C, 20% relative humidity (RH)] or hot–humid (36.5 °C, 60% RH) environment. In both conditions, evaporative heat loss was not significantly different between groups (dry: p = 0.758; humid: p = 0.814). However, the rate of dry heat gain was significantly greater (by approx. 10 W) for older adults relative to younger adults during the hot–dry (p = 0.032) and hot–humid exposure (p = 0.019). Consequently, the cumulative change in body heat content after 2 h of rest was significantly greater in older adults in the hot–dry (older: 212 ± 25 kJ; younger: 131 ± 27 kJ, p = 0.018) as well as the hot–humid condition (older: 426 ± 37 kJ; younger: 317 ± 45 kJ, p = 0.037). These findings demonstrate that older individuals store more heat during short exposures to dry and humid heat, suggesting that they may experience increased levels of thermal strain in such conditions than people of younger age.


1999 ◽  
Vol 276 (2) ◽  
pp. R298-R307 ◽  
Author(s):  
Edward L. Robinson ◽  
Charles A. Fuller

Whole body heat production (HP) and heat loss (HL) were examined to determine their relative contributions to light masking of the circadian rhythm in body temperature (Tb). Squirrel monkey metabolism ( n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of body temperature and activity. Feeding was also measured. Responses to an entraining light-dark (LD) cycle (LD 12:12) and a masking LD cycle (LD 2:2) were compared. HP and HL contributed to both the daily rhythm and the masking changes in Tb. All variables showed phase-dependent masking responses. Masking transients at L or D transitions were generally greater during subjective day; however, L masking resulted in sustained elevation of Tb, HP, and HL during subjective night. Parallel, apparently compensatory, changes of HL and HP suggest action by both the circadian timing system and light masking on Tb set point. Furthermore, transient HL increases during subjective night suggest that gain change may supplement set point regulation of Tb.


1982 ◽  
Vol 53 (2) ◽  
pp. 316-323 ◽  
Author(s):  
C. J. Gordon

Male CBA/J mice were administered heat loads of 0–28 J X g-1 at specific absorption rates (SARs) of either 47 or 93 W X kg-1 by exposure to 2,450-MHz microwave radiation at an ambient temperature of 30 degrees C while evaporative heat loss (EHL) was continuously monitored with dew-point hygrometry. At an SAR of 47 W X kg-1 a threshold heat load of 10.5 J X g-1 had to be exceeded before EHL increased. An approximate doubling of SAR to 93 W X kg-1 reduced the threshold to 5.2 J X g-1. Above threshold the slopes of the regression lines were 1.15 and 0.929 for the low- and high-SAR groups, respectively. Thus the difference in threshold and not slope attributes to the significant increase in EHL when mice are exposed at a high SAR (P less than 0.02). In separate experiments a SAR of 47 W X kg-1 raised the deep body temperature of anesthetized mice at a rate of 0.026 degrees C X s-1, whereas 93 W X kg-1 raised temperature at 0.049 degrees C X s-1. Hence the sensitivity of the EHL mode of heat dissipation is directly proportional to the rate of heat absorption and to the rate of rise in body temperature. These data contradict the notion that mammals have control over whole-body heat exchange only (i.e., thermoregulation) but instead indicate that the EHL system is highly responsive to the rate of heat absorption (i.e., temperature regulation).


1979 ◽  
Vol 47 (4) ◽  
pp. 712-717 ◽  
Author(s):  
J. A. Dickson ◽  
A. McKenzie ◽  
K. McLeod

Temperature was simultaneously measured by thermistors in multiple deep-body and peripheral sites in adult pigs heated continuously at 42 degrees C (rectal) and above for 4–24 h. During hyperthermia, the relations between different body temperatures were maintained and up to 1.0 degrees C separated temperature measurements at sites such as liver and bone marrow. These persistent temperature gradients must be borne in mind when evaluating tumor response in patients subjected to whole-body heating for disseminated cancer. Temperatures recorded by rectal, deep esophageal, or tympanic membrane sensors provided a reliable index of core temperature (including brain temperature) under equilibrium conditions at 42 degrees C, but only esophageal and tympanic sensors could safely be used to monitor the induction phase of hyperthermia and the adjustive changes in body-heat content required to stabilize core temperature during sustained hyperthermia. Pigs withstood repeated heating at 42 degrees C for 6 h, and recovered rapidly, but died after 24 h of hyperthermia. Pigs subjected to unrestrained heating died at 45 degrees C (esophagus).


2019 ◽  
Vol 127 (4) ◽  
pp. 984-994 ◽  
Author(s):  
Nicole T. Vargas ◽  
Christopher L. Chapman ◽  
Blair D. Johnson ◽  
Rob Gathercole ◽  
Matthew N. Cramer ◽  
...  

We tested the hypothesis that thermal behavior resulting in reductions in mean skin temperature alleviates thermal discomfort and mitigates the rise in core temperature during light-intensity exercise. In a 27 ± 0°C, 48 ± 6% relative humidity environment, 12 healthy subjects (6 men, 6 women) completed 60 min of recumbent cycling. In both trials, subjects wore a water-perfused suit top continually perfusing 34 ± 0°C water. In the behavior trial, subjects maintained their upper body thermally comfortable by pressing a button to perfuse cool water (2.2 ± 0.5°C) through the top for 2 min per button press. Metabolic heat production (control: 404 ± 52 W, behavior: 397 ± 65 W; P = 0.44) was similar between trials. Mean skin temperature was reduced in the behavior trial (by −2.1 ± 1.8°C, P < 0.01) because of voluntary reductions in water-perfused top temperature ( P < 0.01). Whole body ( P = 0.02) and local sweat rates were lower in the behavior trial ( P ≤ 0.05). Absolute core temperature was similar ( P ≥ 0.30); however, the change in core temperature was greater in the behavior trial after 40 min of exercise ( P ≤ 0.03). Partitional calorimetry did not reveal any differences in cumulative heat storage (control: 554 ± 229, behavior: 544 ± 283 kJ; P = 0.90). Thermal behavior alleviated whole body thermal discomfort during exercise (by −1.17 ± 0.40 arbitrary units, P < 0.01). Despite lower evaporative cooling in the behavior trial, similar heat loss was achieved by voluntarily employing convective cooling. Therefore, thermal behavior resulting in large reductions in skin temperature is effective at alleviating thermal discomfort during exercise without affecting whole body heat loss. NEW & NOTEWORTHY This study aimed to determine the effectiveness of thermal behavior in maintaining thermal comfort during exercise by allowing subjects to voluntarily cool their torso and upper limbs with 2°C water throughout a light-intensity exercise protocol. We show that voluntary cooling of the upper body alleviates thermal discomfort while maintaining heat balance through convective rather than evaporative means of heat loss.


2015 ◽  
Vol 118 (3) ◽  
pp. 299-309 ◽  
Author(s):  
Jill M. Stapleton ◽  
Martin P. Poirier ◽  
Andreas D. Flouris ◽  
Pierre Boulay ◽  
Ronald J. Sigal ◽  
...  

Aging is associated with an attenuated physiological ability to dissipate heat. However, it remains unclear if age-related impairments in heat dissipation only occur above a certain level of heat stress and whether this response is altered by aerobic fitness. Therefore, we examined changes in whole body evaporative heat loss (HE) as determined using whole body direct calorimetry in young ( n = 10; 21 ± 1 yr), untrained middle-aged ( n = 10; 48 ± 5 yr), and older ( n = 10; 65 ± 3 yr) males matched for body surface area. We also studied a group of trained middle-aged males ( n = 10; 49 ± 5 yr) matched for body surface area with all groups and for aerobic fitness with the young group. Participants performed intermittent aerobic exercise (30-min exercise bouts separated by 15-min rest) in the heat (40°C and 15% relative humidity) at progressively greater fixed rates of heat production equal to 300 (Ex1), 400 (Ex2), and 500 (Ex3) W. Results showed that HE was significantly lower in middle-aged untrained (Ex2: 426 ± 34; and Ex3: 497 ± 17 W) and older (Ex2: 424 ± 38; and Ex3: 485 ± 44 W) compared with young (Ex2: 472 ± 42; and Ex3: 558 ± 51 W) and middle-aged trained (474 ± 21; Ex3: 552 ± 23 W) males at the end of Ex2 and Ex3 ( P < 0.05). No differences among groups were observed during recovery. We conclude that impairments in HE in older and middle-aged untrained males occur at exercise-induced heat loads of ≥400 W when performed in a hot environment. These impairments in untrained middle-aged males can be minimized through regular aerobic exercise training.


2017 ◽  
Vol 118 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Dustin R. Allen ◽  
Mu Huang ◽  
Iqra M. Parupia ◽  
Ariana R. Dubelko ◽  
Elliot M. Frohman ◽  
...  

Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS), disrupting autonomic function. The aim of this study was to test the hypothesis that individuals with MS have blunted control of thermoregulatory reflex increases in sweat rate (SR) and cutaneous vasodilation compared with controls during a passive whole body heat stress (WBH). Eighteen individuals with relapsing-remitting MS and 18 healthy controls (Con) participated in the study. Core temperature (Tcore), skin temperature, heart rate, arterial blood pressure (10-min intervals), skin blood flow (laser-Doppler flux, LDF), and SR were continuously measured during normothermic baseline (34°C water perfusing a tube-lined suit) and WBH (increased Tcore 0.8°C via 48°C water perfusing the suit). Following WBH, local heaters were warmed to 42°C, inducing peak cutaneous vasodilation at the site of LDF collection. Cutaneous vascular conductance (CVC) was calculated as the ratio of LDF to mean arterial pressure and expressed as a percentage of peak achieved during local heating. Individuals with MS had attenuated SR responses to WBH (ΔSR from baseline: Con, 0.65 ± 0.27; MS, 0.42 ± 0.17 mg·cm−2·min−1, P = 0.003), whereas Δ%CVC42C from baseline was similar between groups (Con, 42 ± 16%; MS, 38 ± 12%, P = 0.39). SR responses were blunted as a function of Tcore in MS (interaction: group × Tcore, P = 0.03), of which differences were evident at ΔTcore 0.7°C and 0.8°C ( P < 0.05). No interaction was observed in Δ%CVC42C. Taken together, the findings show MS blunts sweating responses, whereas control of the cutaneous vasculature is preserved, in response to WBH. NEW & NOTEWORTHY This study is the first to assess the reflex control of the thermoregulatory system in individuals living with multiple sclerosis (MS). The novel findings are twofold. First, attenuated increases in sweat rate in subjects with MS compared with healthy controls were observed in response to a moderate increase (0.8°C) in core temperature via passive whole body heat stress. Second, it appears the reflex control of the cutaneous vasculature is preserved in MS.


1999 ◽  
Vol 24 (4) ◽  
pp. 377-386 ◽  
Author(s):  
Glen P. Kenny ◽  
Paul M. Denis ◽  
Normand G. Boulé ◽  
Carolyn E. Proulx ◽  
James S. Thoden ◽  
...  

It has previously been observed that (a) following 15 min of intense exercise, esophageal temperature (Tes), remains elevated at a plateau value equal to that at which active vasodilation had occurred during exercise (i.e., esophageal temperature threshold for cutaneous vasodilation [ThVD]); and (b) exercise/recovery cycles of identical intensity and duration, when sequential, result in progressively higher Tes at the beginning and end of exercise. In the latter case, parallel increases in both the exercise ThVD and postexercise plateau of Tes were noted. This study was conducted to determine if the elevated postexercise Tes is related to increases in whole-body heat content. On separate occasions, 9 subjects completed 3 bouts of treadmill exercise at 70% [Formula: see text] max, 29 °C ambient temperature. Each exercise bout lasted either 15, 30, or 45 min and was followed by 60 min of inactive recovery. Esophageal temperatures were similar at the start of each exercise bout, but the rise in Tes during exercise nearly doubled from 1.0 °C after 15 min of exercise to 1.9 °C after 45 min of exercise. There were no intercondition differences among the exercise ThVD (∼0.36 °C above baseline) or postexercise plateau values for Tes (∼0.40 °C above baseline). Thus the relationship between the ThVD during exercise and the postexercise Tes did not appear to be dependent on changes in whole-body heat content as produced by endogenous heating during exercise of different duration. Key words: cutaneous vasodilation threshold, exercise hyperthermia. temperature elevation


Sign in / Sign up

Export Citation Format

Share Document