Liver heat production and temperature regulation in the anesthetized dog

1979 ◽  
Vol 237 (5) ◽  
pp. R334-R339 ◽  
Author(s):  
P. Baconnier ◽  
G. Benchetrit ◽  
M. Tanche

Liver heat production (LHP) was measured in the anesthetized dog by a new calorimetric method. Blood flows and temperatures were measured at the same points. The method avoided damage of liver innervation and vascularization. Changes of LHP were investigated under different thermal conditions. Measurements at controlled arterial temperatures within the physiological range showed changes of LHP when arterial temperature was randomly increased or decreased. When measured LHP was compared in experiments carried out at different ambient temperatures, a negative linear correlation was found between LHP and the ambient temperature. It was concluded that liver heat production may be a factor in temperature regulation.

2001 ◽  
Vol 21 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Roger S. Seymour

The flowers or inflorescences of certain primitive seed plants are able to regulate their temperature during blooming by modulating the rate of heat production to remain much warmer than the surroundings. A large drop in ambient temperature causes a smaller drop in flower temperature which causes an increase in the rate of heat production by futile involvement of the cytochrome and alternative oxidase respiratory pathways. The result is that the rate of heat production is inversely related to ambient temperature and flower temperature remains high and relatively independent of ambient temperature. While the biophysics of thermal balance in the whole flowers is better understood, the regulation of the biochemical heat-generating pathways is not known.


1973 ◽  
Vol 81 (1) ◽  
pp. 173-177 ◽  
Author(s):  
R. H. Davis ◽  
O. E. M. Hassan ◽  
A. H. Sykes

SummaryEnergy balances have been determined, using the comparative slaughter procedure, over 3-week periods on groups of laying hens kept at ambient temperatures of 7·2, 15·6, 23·9, 29·4 and 35 °C.Energy intake declined as the environment became warmer (kcal ME/kg¾/day = 203· 1·13°C); heat production, as measured by the difference between energy intake and energy retention, also declined with increasing ambient temperature (kcal/kg¾/day = 151 – 1·11°C). There was a linear relationship between heat production and ambient temperature with no thermoneutral zone or critical temperature.The energy available for egg production remained almost constant at 50 kcal/kg¾/day equivalent to a rate of egg production of 82% at each ambient temperature.


1992 ◽  
Vol 55 (3) ◽  
pp. 397-405 ◽  
Author(s):  
J. W. Schrama ◽  
A. Arieli ◽  
M. J. W. Heetkamp ◽  
M. W. A. Verstegen

AbstractSeven groups of five or six Holstein-Friesian male calves were transported to an experimental farm at 2 to 3 days of age. At 6 days of age, heat production (HP) and metabolizable energy (ME) intake were measured for an 8-day period. During this period, calves were exposed to various ambient temperatures: 6, 9, 12 and 15°C. Ambient temperature was constant within days, but changed between days. Calves were fed below (four groups) or near (three groups) the maintenance requirements (290 or 460 kJ ME per kg M0·75 per day).From 6 to 14 days of age the lower critical temperature (Tc) was 12·5°C and HP increased by 8·4 kJ/kg M0·75 per day per °Cfall in ambient temperature below Tc. Both Tc and increase in HP below Tc were not affected by feeding level. Rectal temperature was lower at low ambient temperatures. The decrease in rectal temperature with ambient temperature was greatest at the low feeding level.During the experimental period, calves were not in a steady-state regarding energy metabolism. Heat production decreased with time. This decrease was affected by feeding level and ambient temperature. After arrival, the influence of both ambient temperature and feeding level on the energy metabolism of young calves increased with time.


1986 ◽  
Vol 64 (4) ◽  
pp. 889-892 ◽  
Author(s):  
E. Don Stevens ◽  
J. Ferguson ◽  
V. G. Thomas ◽  
E. Hohtola

We estimated heat production in Japanese quail (Coturnix coturnix japonica) by measuring oxygen uptake using open-circuit respirometry as ambient temperature was decreased gradually from 26 to 3.5 °C. At the same time, the intensity of shivering was estimated in both the leg muscles and the flight muscles by measuring electromyograms. Metabolic heat production increased in a linear fashion as ambient temperature decreased. Shivering intensity increased at the same linear rate in the leg muscles as in the flight muscles as ambient temperature decreased. The leg muscles produce a substantial fraction (about 1/4) of the total shivering heat production at low ambient temperatures. Shivering occurred in bursts; the onset of a burst in the leg muscles was precisely synchronized with the onset of a burst in the flight muscles.


1965 ◽  
Vol 20 (3) ◽  
pp. 405-410 ◽  
Author(s):  
Hermann Pohl

Characteristics of cold acclimation in the golden hamster, Mesocricetus auratus, were 1) higher metabolic rate at -30 C, 2) less shivering when related to ambient temperature or oxygen consumption, and 3) higher differences in body temperature between cardiac area and thoracic subcutaneous tissues at all ambient temperatures tested, indicating changes in tissue insulation. Cold-acclimated hamsters also showed a rise in temperature of the cardiac area when ambient temperature was below 15 C. Changes in heat distribution in cold-acclimated hamsters suggest higher blood flow and heat production in the thoracic part of the body in the cold. The thermal conductance through the thoracic and lumbar muscle areas, however, did not change notably with lowering ambient temperature. Marked differences in thermoregulatory response to cold after cold acclimation were found between two species, the golden hamster and the thirteen-lined ground squirrel, showing greater ability to regulate body temperature in the cold in hamsters. hibernator; oxygen consumption— heat production; body temperature — heat conductance; muscular activity — shivering; thermoregulation Submitted on July 6, 1964


1971 ◽  
Vol 55 (1) ◽  
pp. 223-239 ◽  
Author(s):  
BERND HEINRICH ◽  
GEORGE A. BARTHOLOMEW

The physiology of pre-flight warm-up in Manduca sexta was analysed with regard to rate of heat production, regional partitioning of heat between thorax and abdomen, and the control of blood circulation. 1. When moths which have come to equilibrium with ambient temperature undergo pre-flight warm-up, the thoracic temperature increases linearly until flight temperature (37-39 °C) is approached. 2. The rate of increase in thoracic temperature during warm-up increases directly with ambient temperature from about 2 °C/min at 15 °C to about 7.6 °C/min at 30 °C. 3. The temperature of the abdomen remains near ambient throughout the period of warm-up, but during the initial part of post-flight cooling while thoracic temperature declines sharply abdominal temperatures rise appreciably. 4. During warm-up the rate of wing vibration increases linearly with thoracic temperature. At a thoracic temperature of 15 °C the rate is about 8/sec and at 35 °C it is about 25/sec. 5. When resting animals are held by the legs they at once begin to beat their wings through a wide angle. These wing beats at any given thoracic temperature are slower than the wing vibrations characteristic of normal warm-up, but they cause thoracic temperature to increase at almost the normal rate. 6. The removal of thoracic scales causes a decrease in rate of warm-up, but in still air this does not prevent the moths from reaching flight temperature. 7. During cooling the rate of decrease in thoracic temperature is greater in live animals than in freshly killed ones. At any given difference between thoracic and ambient temperatures cooling rates are directly related to thoracic temperature. 8. In resting moths heart pulsations are usually variable with regard to rate, amplitude, rhythm, and sometimes direction, but the records of cardiac activity simultaneously obtained from thorax and abdomen show close correspondence. 9. During warm-up the records of changes in impedance from electrodes in the abdomen indicate that pulsations of the abdominal heart are either absent, greatly reduced, or at a frequency different from that simultaneously recorded from the thorax. 10. The calculated rate of heat production during warm-up is linearly related to thoracic temperature. 11. Our data are consistent with the assumption that heat produced in the thorax during warm-up is sequestered there by reduction in blood circulation between thorax and abdomen. 12. Rates of warm-up in insects are close to the values predicted on the basis of body weight from data on heterothermic birds and animals.


1991 ◽  
Vol 52 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Khub Singh ◽  
N. K. Bhattacharyya

ABSTRACTResting heat production (H), respiratory rate (RR) and rectal temperature (Tr) were measured at different controlled temperatures (Tt) in Hariana (Bos indicus) and its F, crosses with Jersey (JH), Brown Swiss (BH) and Holstein Friesian (FH) (Bos taurus) breeds and the values obtained were used to assess their relative thermosensitivity.The lowest Tt at which H significantly decreased from that at 17°c was 32°c for Hariana, JH and BH and 27°c for FH after exposure for 8 days. The corresponding values after exposure for 18 days were 37°c for Hariana and 32°c for all the three crossbred groups. Differences between the genetic groups were also significant. The lowest Tt at which metabolizable energy (ME) decreased significantly in comparison with those at 17CC was 32°c in all the genetic groups. The differences in ME intake between genetic groups were significant only at 32°c Tt. The lowest Tt at which RR significantly increased from those at 17°c were 32°c in Hariana, 27°c in JH, BH and FH for both 5 to 7 and 15 to 17 days of exposure. The corresponding Tt for increase in Tr was 37°c in Hariana, 32°c in JH and 27°c in BH and FH at both 5 to 7 and 15 to 17 days of exposure.The ambient temperature at which H would have significantly decreased and RR and Tr increased from the respective values at 17CC Tt were calculated curvilinearly for different genetic groups. There were differences in these values of calculated ambient temperatures between genetic groups and between exposure durations in respect of H, RR, and Tr, indicating differences in thermosensitivity.


1993 ◽  
Vol 174 (1) ◽  
pp. 299-320 ◽  
Author(s):  
G. N. Stone

1. This study examines variation in thoracic temperatures, rates of pre-flight warm-up and heat loss in the solitary bee Anthophora plumipes (Hymenoptera; Anthophoridae). 2. Thoracic temperatures were measured both during free flight in the field and during tethered flight in the laboratory, over a range of ambient temperatures. These two techniques give independent measures of thermoregulatory ability. In terms of the gradient of thoracic temperature on ambient temperature, thermoregulation by A. plumipes is more effective before flight than during flight. 3. Warm-up rates and body temperatures correlate positively with body mass, while mass-specific rates of heat loss correlate negatively with body mass. Larger bees are significantly more likely to achieve flight temperatures at low ambient temperatures. 4. Simultaneous measurement of thoracic and abdominal temperatures shows that A. plumipes is capable of regulating heat flow between thorax and abdomen. Accelerated thoracic cooling is only demonstrated at high ambient temperatures. 5. Anthophora plumipes is able to fly at low ambient temperatures by tolerating thoracic temperatures as low as 25 sC, reducing the metabolic expense of endothermic activity. 6. Rates of heat generation and loss are used to calculate the thermal power generated by A. plumipes and the total energetic cost of warm-up under different thermal conditions. The power generated increases with thoracic temperature excess and ambient temperature. The total cost of warm-up correlates negatively with ambient temperature.


1961 ◽  
Vol 12 (6) ◽  
pp. 1152 ◽  
Author(s):  
G Alexander

Studies were made on temperature regulation of lambs in a closed circuit indirect calorimeter. Dry new-born lambs were able to maintain normal body temperature in ambient temperatures as low as -5°C. This was accomplished by increasing heat production to 2–3 times "basal" levels, apparently by increased oxidation of fats, and by reducing heat loss through the extremities by vasoconstriction. The lower limit of the zone of thermal neutrality was about 29°C. In unsuckled lambs within 24 hr of birth, the heat produced in response to cold appeared to be independent of pre-natal nutrition and age. It was considerably lower in lambs with hairy coats than in lambs with fine coats. Milk intake increased heat production, and this increase was abolished after 12 hr of fasting in lambs up to 3 days old, but the increase persisted in older lambs. The increase was accompanied by, and was apparently due to, elevated heat loss from the extremities, which persisted even at low temperatures. The maximal thermal insulation of the tissues, calculated from these results, was about 1 Clo; that of the fleece plus air was only 1 to 2 Clo.


1962 ◽  
Vol 13 (1) ◽  
pp. 82 ◽  
Author(s):  
G Alexander

The study of temperature regulation in new-born lambs has been extended from dry lambs in "still air" at various ambient temperatures to dry lambs in a wind of 550 cm sec-l, and to lambs whose coats are drying. Exposure to wind resulted in an increased slope of the line relating heat production to ambient temperature, but under the experimental conditions evaporation of water from the coat added approximately the same increment at all ambient temperatures. The effects of wind and evaporation at any one temperature appeared additive. The heat loss from naturally wet new-born lambs less than 1 hr old, in a wind, was greater than in slightly older lambs wetted with tap water. Lambs with hairy coats were able to conserve heat more readily than lambs with fine coats. The cooling efficiency of evaporation from the coat was about 25%. The elevation in temperature of the extremities which follows feeding and persists under conditions of moderate heat loss, appears to be almost abolished under conditions of high heat loss. During the studies on drying lambs, beat loss in many lambs exceeded heat production, and rectal temperature fell, which thus indicated the maximum possible heat production (summit metabolic rate) of which lambs are capable. Lambs from ewes on low or medium levels of feeding during pregnancy cooled more readily than lambs from well-fed ewes.


Sign in / Sign up

Export Citation Format

Share Document