Calorimetric study of the energetics of pregnancy in golden hamsters

1990 ◽  
Vol 259 (4) ◽  
pp. R807-R812 ◽  
Author(s):  
V. S. Quek ◽  
P. Trayhurn

The energetics of pregnancy have been assessed in the golden hamster, using continuous whole body indirect calorimetry to determine energy expenditure throughout gestation. Energy intake was unchanged during pregnancy, either on a daily or cumulative basis. The total energy expenditure per animal was, however, significantly higher (14%) in pregnant hamsters than in virgin control animals. The increase in total expenditure was the result of increases in daily energy expenditure over the last one-third of gestation (mean increase 21%), the period during which the energy costs associated with fetal growth are highest. The respiratory quotient (RQ) of the control hamsters was approximately 0.95, but in the pregnant group there was a progressive reduction over the second half of gestation, and by parturition the RQ had fallen to 0.80. The changes in RQ indicate that there is a switch toward the oxidation of fat, away from the oxidation of carbohydrate, in the later stages of pregnancy. Measurements of body lipid suggest that the fall in RQ in the second half of pregnancy is the result of a net utilization of maternal fat reserves; 42% of maternal body lipid was lost during pregnancy, with most of the loss occurring over the final one-third of gestation. Because energy expenditure is increased (relative to virgin controls) without any change in energy intake, it is evident that the efficiency of energy utilization (energy gain per unit of energy intake) is not increased during pregnancy in the golden hamster.

Author(s):  
Sadia Fatima ◽  
Konstantinos Gerasimidis ◽  
Charlotte Wright ◽  
Dalia Malkova

Abstract Background/Objective Morning consumption of a single dose of high-energy oral nutritional supplement (ONS) in females with a lower BMI displaces some of the food eaten at breakfast but increases overall daily energy intake. This study investigated the effectiveness of ONS intake in the late afternoon and for longer duration. Subjects/Methods Twenty-one healthy females (mean ± SD, age 25 ± 5 years; BMI 18.7 ± 1.2 kg/m2) participated in a randomised, crossover study with two experimental trials. In the afternoon of days 1–5, participants consumed either ONS (2.510 MJ) or low-energy PLACEBO drink (0.377 MJ) and recorded food eaten at home. On day six, energy intake was measured during buffet meals, and energy expenditure, appetite measurements and blood samples were collected throughout the day. Result Over the 5-day period, in the ONS trial energy intake from evening meals was lower (ONS, 2.7 ± 0.25 MJ; Placebo, 3.6 ± 0.25 MJ, P = 0.01) but averaged total daily energy intake was higher (ONS, 9.2 ± 0.3 MJ; PLACEBO, 8.2 ± 0.4 MJ, P = 0.03). On day six, energy intake, appetite scores, plasma GLP-1 and PYY, and energy expenditure were not significantly different between the two trials but fasting insulin concentration and HOMAIR, were higher (P < 0.05) and insulin sensitivity score based on fasting insulin and TAG lower (P < 0.05) in ONS trial. Conclusion Late afternoon consumption of ONS for five consecutive days by females with a lower BMI has only a partial and short-lived energy intake suppression and thus increases daily energy intake but reduces insulin sensitivity.


2000 ◽  
Vol 84 (4) ◽  
pp. 531-539 ◽  
Author(s):  
Jérôme Ribeyre ◽  
Nicole Fellmann ◽  
Jean Vernet ◽  
Michel Delaître ◽  
Alain Chamoux ◽  
...  

The objectives of the study were to determine: (1) daily energy expenditure (EE) of athletic and non-athletic adolescents of both sexes in free-living conditions; (2) day-to-day variations in daily EE during 1 week; (3) energy costs of the main activities; and (4) the effect of usual activity on EE during sleep, seated and miscellaneous activities. Fifty adolescents (four groups of eleven to fifteen boys or girls aged 16–19 years) participated in the study. Body composition was measured by the skinfold-thickness method, and VO2max and external mechanical power (EMP) by a direct method (respiratory gas exchanges) on a cycloergometer. Daily EE and partial EE in free-living conditions were computed from heart-rate (HR) recordings during seven consecutive days using individual prediction equations established from the data obtained during a 24 h period spent in whole-body calorimeters with similar activities. Fat-free mass (FFM), VO2max, EMP, daily EE and EE during sleep were significantly higher in athletic than in non-athletic subjects. After adjustment for FFM, VO2max, EMP, daily EE and EE during exercise were still higher in athletic than in non-athletic adolescents (P<0·001). However, adjusted sleeping EE was not significantly different between athletic and non-athletic adolescents. Increases in exercise EE were partly compensated for by significant reductions in EE during schoolwork and miscellaneous activities. Thus, the differences in daily EE between athletic and non-athletic subjects resulted mainly from increases in FFM and EE during exercise (duration and energy cost).


2019 ◽  
Vol 29 (5) ◽  
pp. 559-566 ◽  
Author(s):  
Liam Anderson ◽  
Graeme L. Close ◽  
Matt Konopinski ◽  
David Rydings ◽  
Jordan Milsom ◽  
...  

Maintaining muscle mass and function during rehabilitation from anterior cruciate ligament injury is complicated by the challenge of accurately prescribing daily energy intakes aligned to energy expenditure. Accordingly, we present a 38-week case study characterizing whole body and regional rates of muscle atrophy and hypertrophy (as inferred by assessments of fat-free mass from dual-energy X-ray absorptiometry) in a professional male soccer player from the English Premier League. In addition, in Week 6, we also quantified energy intake (via the remote food photographic method) and energy expenditure using the doubly labeled water method. Mean daily energy intake (CHO: 1.9–3.2, protein: 1.7–3.3, and fat: 1.4–2.7 g/kg) and energy expenditure were 2,765 ± 474 and 3,178 kcal/day, respectively. In accordance with an apparent energy deficit, total body mass decreased by 1.9 kg during Weeks 1–6 where fat-free mass loss in the injured and noninjured limb was 0.9 and 0.6 kg, respectively, yet, trunk fat-free mass increased by 0.7 kg. In Weeks 7–28, the athlete was advised to increase daily CHO intake (4–6 g/kg) to facilitate an increased daily energy intake. Throughout this period, total body mass increased by 3.6 kg (attributable to a 2.9 and 0.7 kg increase in fat free and fat mass, respectively). Our data suggest it may be advantageous to avoid excessive reductions in energy intake during the initial 6–8 weeks post anterior cruciate ligament surgery so as to limit muscle atrophy.


1987 ◽  
Vol 63 (2) ◽  
pp. 465-470 ◽  
Author(s):  
H. Shibata ◽  
L. J. Bukowiecki

The consequences of fasting or overfeeding during 2 days on energy expenditure were investigated by continuously monitoring O2 consumption in unrestrained, unanesthetized rats. O2 consumption decreased by 15% on the 1st day of fasting and then by an additional 15% on the 2nd day. On the 3rd day, when rats were fed again, energy intake increased by 30% above control (prefasting) values, whereas energy expenditure rapidly increased but no more than control values. On the other hand, when ad libitum fed animals were offered a sucrose solution (32%) for 2 days, energy intake increased by 30% and energy expenditure by 9–12%. On the 3rd day, when the rats were fed with their normal diet, energy intake significantly decreased under control (preoverfeeding) values during one day, but energy expenditure rapidly returned to normal values. The results show that fasting decreases, whereas hyperphagia increases 24-h energy expenditure during the treatments. When the treatments are terminated, energy expenditure rapidly returns to normal values, but fasting induces a postfasting increase of energy intake (during 2 days), whereas hyperphagia, on the contrary, results in a transient decrease of appetite. This indicates that alterations of food intake induce compensatory changes of energy expenditure during the treatments, but that after the treatments, energy balance is normalized via regulatory adjustments in the ratio of energy expenditure over energy intake.


1990 ◽  
Vol 68 (6) ◽  
pp. 2612-2617 ◽  
Author(s):  
D. L. Ballor ◽  
L. J. Tommerup ◽  
D. P. Thomas ◽  
D. B. Smith ◽  
R. E. Keesey

The combined influence of exercise training and dietary restriction on daily energy expenditure was evaluated by exposing 48 male Sprague-Dawley rats to one of three food intake conditions [ad libitum (AL), moderately restricted (MR), or severely restricted (SR)] and to one of two exercise conditions [treadmill exercised (E) or cage confined (CC)]. After 10 wk of exercise and dietary restriction, the MR-CC and MR-E rats weighed 84 and 86%, respectively, of AL-CC, whereas the SR-CC and SR-E rats weighed 66 and 68% of AL-CC. Dietary restriction and subsequent weight loss produced significant reductions in both total and resting daily energy expenditure. Exercise partially reversed this effect, but the extent of this reversal diminished as the severity of dietary restriction was increased. These results raise the distinct possibility that inconsistencies in the current literature concerning the effects of exercise on whole body metabolism during periods of dietary restriction might be reconciled by an appreciation and an understanding of the influence that duration of exercise training and severity of food restriction have on this measure.


1964 ◽  
Vol 15 (6) ◽  
pp. 969 ◽  
Author(s):  
N McCGraham

The energy costs of standing, of rumination, of eating prepared meals, and of grazing were determined in laboratory experiments by indirect calorimetry. Sheep with body weights ranging from 30 to 110 kg were used. Energy expenditure due to standing amounted to 0.34 ± 0.02 kcal/hr/kg body weight. The energy cost of rumination was 0.24 ± 0.03 kcal/hr/kg. Rate of food intake varied from 60 g dry matter/hr with sheep grazing a poor sward to 800 g/hr with sheep eating hay, but in general this did not affect energy expenditure appreciably. The cost of eating prepared meals of either fresh herbage or hay was 0.54 ± 0.05 kcal/hr/kg body weight. It tended to be greatest when rate of food intake was greatest. Energy expenditure due to grazing was also 0.54 ± 0.05 kcal/hr/kg, irrespective of the type of sward and associated grazing behaviour. It is estimated that muscular work, mainly standing and eating, could account for nearly 40% of the daily energy expenditure of a sheep at maintenance, grazing a poor but level pasture, with drinking water available, and only 10% of that of a caged animal. Such a grazing animal could thus have requirements over 40% greater than those of a caged one. With sheep on hilly pasture or a long way from water, the cost of walking could become a major item.


2013 ◽  
Vol 9 (1) ◽  
pp. 20120919 ◽  
Author(s):  
Kyle H. Elliott ◽  
Maryline Le Vaillant ◽  
Akiko Kato ◽  
John R. Speakman ◽  
Yan Ropert-Coudert

Animal ecology is shaped by energy costs, yet it is difficult to measure fine-scale energy expenditure in the wild. Because metabolism is often closely correlated with mechanical work, accelerometers have the potential to provide detailed information on energy expenditure of wild animals over fine temporal scales. Nonetheless, accelerometry needs to be validated on wild animals, especially across different locomotory modes. We merged data collected on 20 thick-billed murres ( Uria lomvia ) from miniature accelerometers with measurements of daily energy expenditure over 24 h using doubly labelled water. Across three different locomotory modes (swimming, flying and movement on land), dynamic body acceleration was a good predictor of daily energy expenditure as measured independently by doubly labelled water ( R 2 = 0.73). The most parsimonious model suggested that different equations were needed to predict energy expenditure from accelerometry for flying than for surface swimming or activity on land ( R 2 = 0.81). Our results demonstrate that accelerometers can provide an accurate integrated measure of energy expenditure in wild animals using many different locomotory modes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sanjoy K. Deb ◽  
Eimear Dolan ◽  
Catherine Hambly ◽  
John R. Speakman ◽  
Olav Eftedal ◽  
...  

Commercial saturation divers are exposed to unique environmental conditions and are required to conduct work activity underwater. Consequently, divers’ physiological status is shown to be perturbed and therefore, appropriate strategies and guidance are required to manage the stress and adaptive response. This study aimed to evaluate the daily energy expenditure (DEE) of commercial saturation divers during a 21-day diving operation in the North Sea. Ten saturation divers were recruited during a diving operation with a living depth of 72 metres seawater (msw) and a maximum working dive depth of 81 msw. Doubly labelled water (DLW) was used to calculate DEE during a 10-day measurement period. Energy intake was also recorded during this period by maintaining a dietary log. The mean DEE calculated was 3030.9 ± 513.0 kcal/day, which was significantly greater than the mean energy intake (1875.3 ± 487.4 kcal; p = 0.005). There was also a strong positive correction correlation between DEE and total time spent performing underwater work (r = 0.7, p = 0.026). The results suggested saturation divers were in a negative energy balance during the measurement period with an intraindividual variability in the energy cost present that may be influenced by time spent underwater.


Author(s):  
Ian Huck ◽  
E. Matthew Morris ◽  
John Thyfault ◽  
Udayan Apte

Hepatocyte Nuclear Factor 4 alpha (HNF4α) is required for hepatocyte differentiation and regulates expression of genes involved in lipid and carbohydrate metabolism including those that control VLDL secretion and gluconeogenesis. Whereas previous studies have focused on specific genes regulated by HNF4α in metabolism, its overall role in whole body energy utilization has not been studied. In this study, we used indirect calorimetry to determine the effect of hepatocyte-specific HNF4α deletion (HNF4α-KO) in mice on whole body energy expenditure (EE) and substrate utilization in fed, fasted, and high fat diet (HFD) conditions. HNF4α-KO had reduced resting EE during fed conditions and higher rates of carbohydrate oxidation with fasting. HNF4α-KO mice exhibited decreased body mass caused by fat mass depletion despite no change in energy intake and evidence of positive energy balance. HNF4α-KO mice were able to upregulate lipid oxidation during HFD suggesting that their metabolic flexibility was intact. However, only hepatocyte specific HNF4α-KO mice exhibited significant reduction in basal metabolic rate and spontaneous activity during HFD. Consistent with previous studies, hepatic gene expression in HNF4α-KO supports decreased gluconeogenesis and decreased VLDL export and hepatic Beta-oxidation in HNF4α-KO livers across all feeding conditions. Together, our data suggest deletion of hepatic HNF4α increases dependence on dietary carbohydrates and endogenous lipids for energy during fed and fasted conditions by inhibiting hepatic gluconeogenesis, hepatic lipid export, and intestinal lipid absorption resulting in decreased whole body energy expenditure. These data clarify the role of hepatic HNF4α on systemic metabolism and energy homeostasis.


Sign in / Sign up

Export Citation Format

Share Document