Influence of air temperature on ventilation rates and thermoregulation of a flying bat

1991 ◽  
Vol 260 (5) ◽  
pp. R960-R968 ◽  
Author(s):  
S. P. Thomas ◽  
D. B. Follette ◽  
A. T. Farabaugh

To assess the involvement of the ventilatory system in thermoregulation during flight, breathing frequencies and tidal volumes were measured from three Phyllostomus hastatus undertaking steady wind tunnel flights at a constant speed over a range of air temperatures (Ta) from 17.7 to 31.1 degrees C. Mean breathing frequency was independent of Ta, and tidal volume increased only modestly with increasing Ta. Consequently, minute ventilation rate increased insignificantly over the range of Ta values investigated. Mean rectal temperature showed a direct linear relation to Ta and increased significantly from 39.1 to 41.9 degrees C over the range of Ta values investigated. The highest rectal temperatures measured from flying P. hastatus are approximately 3 degrees C less than those of flying birds. In contrast to flying birds, flying P. hastatus does not modulate its rate of respiratory evaporative heat loss to any significant extent in response to environmental heat stress and only loses an estimated 14% of its metabolic heat load by this route. Cutaneous heat loss channels must therefore be very important to these animals. Some reasons for the observed differences in the thermoregulatory responses of flying bats and birds are discussed as well as the relative advantages and limitations of each group's solutions to their thermoregulatory challenges.

1978 ◽  
Vol 235 (1) ◽  
pp. R41-R47
Author(s):  
M. T. Lin ◽  
I. H. Pang ◽  
S. I. Chern ◽  
W. Y. Chia

Elevating serotonin (5-HT) contents in brain with 5-hydroxytryptophan (5-HTP) reduced rectal temperature (Tre) in rabbits after peripheral decarboxylase inhibition with the aromatic-L-amino-acid decarboxylase inhibitor R04-4602 at two ambient temperatures (Ta), 2 and 22 degrees C. The hypothermia was brought about by both an increase in respiratory evaporative heat loss (Eres) and a decrease in metabolic rate (MR) in the cold. At a Ta of 22 degrees C, the hypothermia was achieved solely due to an increase in heat loss. Depleting brain contents of 5-HT with intraventricular, 5,7-dihydroxytryptamine (5,7-DHT) produced an increased Eres and ear blood flow even at Ta of 2 degrees C. Also, MR increased at all but the Ta of 32 degrees C. However, depleting the central and peripheral contents of 5-HT with p-chlorophenylalanine (pCPA) produced lower MR accompanied by lower Eres in the cold compared to the untreated control. Both groups of pCPA-treated and 5,7-DHT-treated animals maintained their Tre within normal limits. The data suggest that changes in 5-HT content in brain affects the MR of rabbits in the cold. Elevating brain content of 5-HT tends to depress the MR response to cold, while depleting brain content of 5-HT tends to enhance the MR response to cold.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Xabier Jaureguibeitia ◽  
Unai Irusta ◽  
Elisabete Aramendi ◽  
Pamela Owens ◽  
Henry E Wang ◽  
...  

Introduction: Resuscitation from out-of-cardiac arrest (OHCA) requires control of both chest compressions and lung ventilation. There are few effective methods for detecting ventilations during cardiopulmonary resuscitation. Thoracic impedance (TI) is sensitive to changes in lung air volumes and may allow detection of ventilations but has not been tested with concurrent mechanical chest compressions. Hypothesis: It is possible to automatically detect and characterize ventilations from TI changes during mechanical chest compressions. Methods: A cohort of 420 OHCA cases (27 survivors to hospital discharge) were enrolled in the Dallas-Fort Worth Center for Resuscitation Research cardiac arrest registry. These patients were treated with the LUCAS-2 CPR device and had concurrent TI and capnogram recordings from MRx (Philips, Andover, MA) monitor-defibrillators. We developed a signal processing algorithm to suppress chest compression artifacts from the TI signal, allowing identification of ventilations. We used the capnogram as gold standard for delivered ventilations. We determined the accuracy of the algorithm for detecting capnogram-indicated ventilations, calculating sensitivity, the proportion of true ventilations detected in the TI, and positive predictive value (PPV), the proportion of true ventilations within the detections. We calculated per minute ventilation rate and mean TI amplitude, as surrogate for tidal volume. Statistical differences between survivors and non-survivors were assessed using the Mann-Whitney test. Results: We studied 4331 minutes of TI during CPR. There were a median of 10 (IQR 6-14) ventilations per min and 52 (30-81) ventilations per patient. Sensitivity of TI was 95.9% (95% CI, 74.5-100), and PPV was 95.8% (95% CI, 80.0-100). The median ventilation rates for survivors and non-survivors were 7.75 (5.37-9.91) min -1 and 5.64 (4.46-7.15) min -1 (p<10 -3 ), and the median TI amplitudes were 1.33 (1.03-1.75) Ω and 1.14 (0.77-1.66) Ω (p=0.095). Conclusions: An accurate automatic TI ventilation detection algorithm was demonstrated during mechanical CPR. The relation between ventilation rate during mechanical CPR and survival was significant, but it was not for impedance amplitude.


1999 ◽  
Vol 202 (11) ◽  
pp. 1523-1533 ◽  
Author(s):  
S.P. Roberts ◽  
J.F. Harrison

Thermoregulation of the thorax allows honeybees (Apis mellifera) to maintain the flight muscle temperatures necessary to meet the power requirements for flight and to remain active outside the hive across a wide range of air temperatures (Ta). To determine the heat-exchange pathways through which flying honeybees achieve thermal stability, we measured body temperatures and rates of carbon dioxide production and water vapor loss between Ta values of 21 and 45 degrees C for honeybees flying in a respirometry chamber. Body temperatures were not significantly affected by continuous flight duration in the respirometer, indicating that flying bees were at thermal equilibrium. Thorax temperatures (Tth) during flight were relatively stable, with a slope of Tth on Ta of 0.39. Metabolic heat production, calculated from rates of carbon dioxide production, decreased linearly by 43 % as Ta rose from 21 to 45 degrees C. Evaporative heat loss increased nonlinearly by over sevenfold, with evaporation rising rapidly at Ta values above 33 degrees C. At Ta values above 43 degrees C, head temperature dropped below Ta by approximately 1–2 degrees C, indicating that substantial evaporation from the head was occurring at very high Ta values. The water flux of flying honeybees was positive at Ta values below 31 degrees C, but increasingly negative at higher Ta values. At all Ta values, flying honeybees experienced a net radiative heat loss. Since the honeybees were in thermal equilibrium, convective heat loss was calculated as the amount of heat necessary to balance metabolic heat gain against evaporative and radiative heat loss. Convective heat loss decreased strongly as Ta rose because of the decrease in the elevation of body temperature above Ta rather than the variation in the convection coefficient. In conclusion, variation in metabolic heat production is the dominant mechanism of maintaining thermal stability during flight between Ta values of 21 and 33 degrees C, but variations in metabolic heat production and evaporative heat loss are equally important to the prevention of overheating during flight at Ta values between 33 and 45 degrees C.


1989 ◽  
Vol 66 (6) ◽  
pp. 2788-2798 ◽  
Author(s):  
D. W. Ray ◽  
E. P. Ingenito ◽  
M. Strek ◽  
P. T. Schumacker ◽  
J. Solway

We assessed the longitudinal distribution of intra-airway heat and water exchanges and their effects on airway wall temperature by directly measuring respiratory fluctuations in airstream temperature and humidity, as well as airway wall temperature, at multiple sites along the airways of endotracheally intubated dogs. By comparing these axial thermal and water profiles, we have demonstrated that increasing minute ventilation of cold or warm dry air leads to 1) further penetration of unconditioned air into the lung, 2) a shift of the principal site of total respiratory heat loss from the trachea to the bronchi, and 3) alteration of the relative contributions of conductive and evaporative heat losses to local total (conductive plus evaporative) heat loss. These changes were not accurately reflected in global measurements of respiratory heat and water exchange made at the free end of the endotracheal tube. Raising the temperature of inspired dry air from frigid to near body temperature principally altered the mechanism of airway cooling but did not influence airway mucosal temperature substantially. When local heat loss was increased from both trachea and bronchi (by increasing minute ventilation), only the tracheal mucosal temperature fell appreciably (up to 4.0 degrees C), even though the rise in heat loss from the bronchi about doubled that in the trachea. Thus it appears that the bronchi are better able to resist changes in airway wall temperature than is the trachea. These data indicate that the sites, magnitudes, and mechanisms of respiratory heat loss vary appreciably with breathing pattern and inspired gas temperature and that these changes cannot be predicted from measurements made at the mouth. In addition, they demonstrate that local heat (and presumably, water) sources that replenish mucosal heat and water lost to the airstream are important in determining the degree of local airway cooling (and presumably, drying).


1979 ◽  
Vol 57 (12) ◽  
pp. 1401-1406 ◽  
Author(s):  
M. T. Lin ◽  
Andi Chandra ◽  
T. C. Fung

The effects of both systemic and central administration of phentolamine on the thermoregulatory functions of conscious rats to various ambient temperatures were assessed. Injection of phentolamine intraperitoneally or into a lateral cerebral ventricle both produced a dose-dependent fall in rectal temperature at room temperature and below it. At a cold environmental temperature (8 °C) the hypothermia in response to phentolamine was due to a decrease in metabolic heat production, but at room temperature (22 °C) the hypothermia was due to cutaneous vasodilatation (as indicated by an increase in foot and tail skin temperatures) and decreased metabolic heat production. There were no changes in respiratory evaporative heat loss. However, in the hot environment (30 °C), phentolamine administration produced no changes in rectal temperature or other thermoregulatory responses. A central component of action is indicated by the fact that a much smaller intraventricular dose of phentolamine was required to exert the same effect as intraperitoneal injection. The data indicate that phentolamine decreases heat production and (or) increases heat loss which leads to hypothermia, probably via central nervous system actions.


Author(s):  
Nesreen Ghaddar ◽  
Kamel Ghali ◽  
Bassel Jreije

A theoretical and experimental study has been performed to determine ventilation induced by swinging motion and external wind for a fabric-covered cylinder of finite length representing a limb. The estimated ventilation rates are used in determining the sensible heat loss form a clothed cylinder using a simplified resistance model. A model is developed to estimate the external pressure distribution resulting from the relative wind around the swinging clothed cylinder. A mass balance equation of the microclimate air layer is reduced to a pressure equation assuming laminar flow in axial and angular directions and that the air layer is lumped in the radial direction. The ventilation model predicted the total renewal rate during the swinging cycle. A good agreement was found between the predicted ventilation rates at swing frequencies between 40 and 60 rpm and measured values from experiments conducted in a controlled environmental chamber (air velocity is less than 0.05 m/s) and used the tracer gas method to measure the total ventilation rate induced by the swinging motion of a cylinder covered with cotton fabric for both closed and open aperture cases. A parametric study using the current model is performed on cotton fabric to study the effect of wind on ventilation rates for a non-moving clothed limb at wind speeds ranging from 0.5–8 m/s, the effect of a swinging limb in stagnant air at frequencies up to 80 rpm, and the combined effect of wind and swinging motion on the ventilation rate. For a non-moving limb, ventilation rate increases with external wind. In absence of wind, the ventilation rate increases with increased swinging frequency. The combined effect of wind and swing is not additive of the single effects at high wind speed while at low frequency it can be assumed additive for wind speeds below 2 m/s and frequencies below 40 rpm. The heat transfer by ventilation is more than 50% of total heat loss from a clothed cylinder at f = 80 rpm in abs cense and presence of wind.


1980 ◽  
Vol 239 (1) ◽  
pp. R57-R61
Author(s):  
P. E. Hillman ◽  
N. R. Scott ◽  
A. van Tienhoven

Intraventricular injections of 5-hydroxytryptamine-HCl (258 nmol) or acetylcholine-HCl (550 nmol) in the chicken caused body temperature to rise at 35 degrees C ambient, a result of decreased evaporative heat loss due to bradypnea. At 10 and 20 degrees C ambient, neither drug affected body temperature. Although these drugs decreased physical activity or shivering or both at 10 and 20 degrees C, metabolic heat production was not depressed enough to alter body temperature significantly. Heart rate decreased simultaneously with decreased activity at 20 degrees C. This study is the first to inject 5-hydroxytryptamine as a salt of HCl, instead of creatinine sulfate, as is commonly used. It is suggested that some of the differences reported herein, compared to other studies, are due to the type of salt used. It is postulated that either 5-hydroxytryptamine or acetylcholine, rather than norepinephrine, may be an important neurotransmitter in the neural pathways for thermoregulation in chickens, even though their action on thermoregulation is minor compared with norepinephrine.


1981 ◽  
Vol 241 (5) ◽  
pp. R301-R306 ◽  
Author(s):  
W. S. Hunter ◽  
K. R. Holmes ◽  
R. S. Elizondo

A partitional calorimetry study compared thermoregulatory responses of unanesthetized adult rhesus monkeys (4 female, 1 male) to those anesthetized with ketamine HCl and exposed to ambient temperature (Ta) of 18, 29, 38 degrees C. Steady-state metabolic heat production (M), mean skin temperature (Tsk), rectal temperature (Tre), respiratory evaporative heat loss (Eres), and total evaporative heat loss (Etot) were measured at each Ta. Average Tre of anesthetized animals was reduced by approximately 1 degree C at Ta 18 degrees C, but thermal balance in anesthetized and control animals was maintained by reflexly decreased tissue conductance and shivering. For anesthetized animals, the average M increased 1.8 times over the lowest value of 40.13 W/m2 at Ta 29 degrees C, compared to a 1.5-fold increase for controls. Responses for both groups were not different at Ta 29 degrees C, both groups regulated body temperatures by vasodilation and increased sweating, but with ketamine sweating was reduced (35%). Effective tissue thermal conductance (K) was lowest at Ta 18 (10.8 W/m2 . degrees C) and increased to 39.4 W/m2 . degrees C at Ta 38 degrees C. No significant difference in K was found between ketamine and control groups at other Ta's.


1972 ◽  
Vol 78 (2) ◽  
pp. 303-307 ◽  
Author(s):  
J. A. McLean ◽  
D. T. Calvert

SUMMARYThe balance between heat production and heat loss and the partition of heat exchanges of cattle in relation to air humidity has been studied at two different air temperatures using a direct (gradient-layer) calorimeter.Increasing humidity at 35 °C air temperature caused no significant change in heat production or in the level of total heat loss finally attained, but body temperature and respiratory activity were both increased.Increasing humidity at 15 °C air temperature caused a small reduction in heat loss by evaporation but had no effect on sensible heat loss, body temperature or respiratory frequency.Heat loss by evaporation amounted to 18% of the total heat loss at 15 °C and to 84% at 35 °C.Heat loss by respiratory evaporation amounted to 54% of the total evaporative heat loss at 15 °C and to 38% at 35 °C.


1980 ◽  
Vol 58 (8) ◽  
pp. 903-908 ◽  
Author(s):  
M. T. Lin ◽  
A. Chandra ◽  
Y. F. Chern ◽  
B. L. Tsay

Systemic and central administration of d-amphetamine both produced dose-dependent hypothermia in the rat at ambient temperature (Ta) 8 °C. The hypothermia was brought about solely by a decrease in metabolic heat production. However, at both Ta 22 and 30 °C, d-amphetamine produced hyperthermia accompanied by behavioral excitation. The hyperthermia was due to cutaneous vasoconstriction and increased metabolic heat production (due to behavioral excitation) at Ta 22 °C, whereas at Ta 30 °C the hyperthermia was due to cutaneous vasoconstriction, decreased respiratory evaporative heat loss, and increased metabolism (due to behavioral excitation). Furthermore, both the thermal and the behavioral responses induced by d-amphetamine were antagonized by pretreatment with intracerebroventricular administration of 6-hydroxydopamine (a depletor of central catecholaminergic nerve fibers). The data indicate that, by eliminating the interference of behavioral responses induced, d-amphetamine leads to an alteration in body temperature of rats by decreasing both metabolic heat production and sensible heat loss, probably via the activation of central catecholaminergic receptors.


Sign in / Sign up

Export Citation Format

Share Document