Persistence of circadian rhythmicity in hibernating ground squirrels

1994 ◽  
Vol 266 (4) ◽  
pp. R1251-R1258 ◽  
Author(s):  
D. A. Grahn ◽  
J. D. Miller ◽  
V. S. Houng ◽  
H. C. Heller

The body temperatures (Tb) of golden-mantled ground squirrels maintained under constant dim light (< 20 1x red light) at an ambient temperature of 10 degrees C were monitored via telemetry throughout the hibernation season. During euthermia, when Tb ranged from 34 to 39 degrees C, these animals exhibited robust circadian Tb rhythms. During bouts of hibernation, when Tb rhythms persisted, although the amplitudes of the rhythms were considerably dampened compared with euthermia. The periods of the intrabout Tb rhythms were within the ranges observed during euthermia and were stable within an individual bout but varied between hibernation bouts. Arousals from hibernation occurred at a fixed phase angle of the Tb cycle. Once the period of an intrabout Tb rhythm was determined, it was possible to predict the timing of arousal from the hibernation bout to within 1 h of any 24-h period. This study confirms previous speculation about the persistence of circadian rhythms in golden-mantled ground squirrels during deep hibernation and demonstrates that the circadian system is involved in the timing of periodic arousals from hibernation.

1995 ◽  
Vol 198 (4) ◽  
pp. 931-937 ◽  
Author(s):  
M B Harris ◽  
W K Milsom

The relative role of the parasympathetic nervous system during deep hibernation is enigmatic. Conflicting hypotheses exist, and both sides draw support from investigations of vagal influence on the heart. Recent studies have shown cardiac chronotropic and inotropic effects of parasympathetic stimulation and inhibition in isolated hearts and anesthetized animals at hibernating body temperatures. No studies, however, have demonstrated such occurrences in undisturbed deeply hibernating animals. The present study documents respiratory-related alterations in heart rate during euthermia and hibernation at ambient temperatures of 15, 10 and 5 degrees C mediated by parasympathetic influence. During quiet wakefulness, euthermic squirrels breathed continuously and exhibited a 29% acceleration in heart rate during inspiration. During deep undisturbed hibernation, at 15, 10 and 5 degrees C ambient temperature, animals exhibited an episodic breathing pattern and body temperatures were slightly above ambient temperature. At each temperature, heart rate during the respiratory episode was greater than that during the apnea. The magnitude of this ventilatory tachycardia decreased with ambient temperature, being 108% at 15 degrees C, 32% at 10 degrees C and 11.5% at 5 degrees C. Animals exposed to 3% CO2 at 5 degrees C, which significantly increased ventilation, still exhibited an 11.7% increase in heart rate during breathing. Thus, the magnitude of the ventilation tachycardia was independent of the level of ventilation, at least over the range studied. Inhibition of vagus nerve conduction at 5 degrees C was achieved using localized nerve block. This led to an increase in apneic heart rate and abolished the ventilatory tachycardia.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 260 (6) ◽  
pp. R1123-R1129 ◽  
Author(s):  
L. Trachsel ◽  
D. M. Edgar ◽  
H. C. Heller

Hibernation is an adaptation for energy conservation, which probably evolved as an extension of non-rapid-eye-movement sleep mechanisms. Yet, during periodic arousals from bouts of deep hibernation, ground squirrels (Spermophilus lateralis) spend most of their time asleep. Spectral analysis of the electroencephalogram revealed that cortical slow-wave intensity during sleep is high at the beginning of a euthermic period and declines thereafter. Sleep slow-wave intensity is greater after longer bouts of hibernation than after shorter bouts. We hypothesize that low body temperatures during hibernation are incompatible with the restorative function of sleep as reflected in cortical slow-wave activity. Animals must incur the energetic costs of periodic arousals from hibernation to receive the restorative benefits of euthermic slow-wave sleep. The timing of arousals from hibernation may be a function of accumulated sleep debt.


2017 ◽  
Vol 4 (12) ◽  
pp. 171359 ◽  
Author(s):  
M. Teague O'Mara ◽  
Sebastian Rikker ◽  
Martin Wikelski ◽  
Andries Ter Maat ◽  
Henry S. Pollock ◽  
...  

Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.


2018 ◽  
Vol 35 ◽  
pp. 1-9 ◽  
Author(s):  
Nathalia Rocha Matias ◽  
Laura Verrastro

Studies on the thermal biology of fossorial reptiles that examine the relationship between the body temperature and thermal environment are needed to determine the extent of their thermoregulation abilities. This study assessed the thermal biology of Amphisbaena munoai Klappenbach, 1969 in the rocky fields of the Rio Grande do Sul and in the laboratory. The body temperature of most individuals was between 24 and 30 °C, both in the field (n = 81) and laboratory (n = 19). More individuals were caught in winter (n = 55) and spring (n = 60) than in summer (n = 25) and fall (n = 45), and in spring, individuals showed similar nocturnal and diurnal activities. In the laboratory, we found individuals with body temperatures up to 5 °C higher than the ambient temperature (n = 4), suggesting that some physiological mechanisms participate in the thermoregulation of these animals. Amphisbaena munoai is a thigmothermic species that is capable of actively regulating its temperature by selecting microhabitats such that its various activities occur within an ideal temperature range. This study is the first to evaluate the effect of seasonality and diurnal and nocturnal variations on the thermoregulation of an amphisbaenid.


1963 ◽  
Vol 204 (5) ◽  
pp. 949-952 ◽  
Author(s):  
Pava Popovic ◽  
Vojin Popovic

Six of seven 2-day-old ground squirrels survived without any harmful consequences 11 hr supercooling to body temperatures of –3 to –4 C. Longer exposure at the same body temperature was not followed by survival. Of 12 ground squirrels which were kept at stabilized body temperatures of –6 and –8 C for 5 hr, 10 animals survived. Electrical activity of the heart was not detectable when the body temperature of ground squirrels was below –2 C. Immersion of newborn ground squirrels in –35 C alcohol-dry-ice mixture caused their bodies to freeze after 15–20 sec, suddenly turning white and rigid. Ground squirrels survived the freezing which lasted less than 2 min. At the end of 2 min immersion the esophageal temperature of cooled animals was –10 to –15 C.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
Rungtip Wonglersak ◽  
Phillip B. Fenberg ◽  
Peter G. Langdon ◽  
Stephen J. Brooks ◽  
Benjamin W. Price

AbstractChironomids are a useful group for investigating body size responses to warming due to their high local abundance and sensitivity to environmental change. We collected specimens of six species of chironomids every 2 weeks over a 2-year period (2017–2018) from mesocosm experiments using five ponds at ambient temperature and five ponds at 4°C higher than ambient temperature. We investigated (1) wing length responses to temperature within species and between sexes using a regression analysis, (2) interspecific body size responses to test whether the body size of species influences sensitivity to warming, and (3) the correlation between emergence date and wing length. We found a significantly shorter wing length with increasing temperature in both sexes of Procladius crassinervis and Tanytarsus nemorosus, in males of Polypedilum sordens, but no significant relationship in the other three species studied. The average body size of a species affects the magnitude of the temperature-size responses in both sexes, with larger species shrinking disproportionately more with increasing temperature. There was a significant decline in wing length with emergence date across most species studied (excluding Polypedilum nubeculosum and P. sordens), indicating that individuals emerging later in the season tend to be smaller.


1999 ◽  
Vol 276 (2) ◽  
pp. R522-R529 ◽  
Author(s):  
Jennie E. Larkin ◽  
H. Craig Heller

Electroencephalographic slow-wave activity (SWA) in non-rapid eye movement (NREM) sleep is directly related to prior sleep/wake history, with high levels of SWA following extended periods of wake. Therefore, SWA has been thought to reflect the level of accumulated sleep need. The discovery that euthermic intervals between hibernation bouts are spent primarily in sleep and that this sleep is characterized by high and monotonically declining SWA has led to speculation that sleep homeostasis may play a fundamental role in the regulation of the timing of bouts of hibernation and periodic arousals to euthermia. It was proposed that because the SWA profile seen after arousal from hibernation is strikingly similar to what is seen in nonhibernating mammals after extended periods of wakefulness, that hibernating mammals may arouse from hibernation with significant accumulated sleep need. This sleep need may accumulate during hibernation because the low brain temperatures during hibernation may not be compatible with sleep restorative processes. In the present study, golden-mantled ground squirrels were sleep deprived during the first 4 h of interbout euthermia by injection of caffeine (20 mg/kg ip). We predicted that if the SWA peaks after bouts of hibernation reflected a homeostatic response to an accumulated sleep need, sleep deprivation should simply have displaced and possibly augmented the SWA to subsequent recovery sleep. Instead we found that after caffeine-induced sleep deprivation of animals just aroused from hibernation, the anticipated high SWA typical of recovery sleep did not occur. Similar results were found in a study that induced sleep deprivation by gentle handling (19). These findings indicate that the SWA peak immediately after hibernation does not represent homeostatic regulation of NREM sleep, as it normally does after prolonged wakefulness during euthermia, but instead may reflect some other neurological process in the recovery of brain function from an extended period at low temperature.


1991 ◽  
Vol 69 (7) ◽  
pp. 1842-1847 ◽  
Author(s):  
Gregory K. Snyder ◽  
Joseph R. Coelho ◽  
Dalan R. Jensen

In chicks the ability to regulate body temperature to adult levels develops during the first 2 weeks of life. We examined whether the ability of young chicks to regulate body temperature is increased by elevated levels of the thyroid hormone 3,3′5-triiodothyronine. By 13 days following hatch, body temperatures of chicks were not significantly different from those expected for adult birds. Furthermore, at an ambient temperature of 10 °C, 13-day-old control chicks were able to maintain body temperature, and elevated serum thyroid hormone levels did not increase rates of oxygen consumption or body temperature above control values. Six-day-old chicks had body temperatures that were significantly lower than those of the 13-day-old chicks and were not able to regulate body temperature when exposed to an ambient temperature of 10 °C. On the other hand, 6-day-old chicks with elevated serum thyroid hormone had significantly higher rates of oxygen consumption than 6-day-old control chicks, and were able to maintain constant body temperatures during cold exposure. The increased oxygen consumption rates and improved ability to regulate body temperature during cold exposure were correlated with increased citrate synthase activity in skeletal muscle. Our results support the argument that thyroid hormones play an important role in the development of thermoregulatory ability in neonate birds by stimulating enzyme activities associated with aerobic metabolism.


2014 ◽  
Vol 54 (9) ◽  
pp. 1476 ◽  
Author(s):  
N. Y. Kim ◽  
S. J. Kim ◽  
J. H. Park ◽  
M. R. Oh ◽  
S. Y. Jang ◽  
...  

The present study aimed to gather basic information on measuring body surface temperature (BST) of cattle by using infrared thermography (IRT) and find out whether BST measurement is a useful method to detect thermal balance of livestock. Twenty-seven Hanwoo steers were examined in a field trial. The BST of five body regions (eye, nose, horn, ear, rear) was measured five times daily, with three replicates, during 3 days each season. Body surface temperature of cattle is directly affected by ambient temperature and humidity, and showed different ranges for each region. The BSTs of nose, horns and ears were significantly (P < 0.05) lower than those of eyes and rear area. Rear-area BST was significantly lower than eye-area BST when the ambient temperature was low (P < 0.05). Eye BST (EBST) was highest (P < 0.05) and the least variable of all BSTs measured. Therefore, the eye area of cattle was the most thermostable part of the body. There were significant (P < 0.05) differences among seasonal EBSTs of steers. The EBST range was highest in the summer (37.9–42.2°C), followed by autumn (34.3–37.4°C), spring (33.8–36.5°C) and winter (29.8–32.6°C). During extreme cold, EBST showed a large standard deviation. During conditions of extreme heat, EBST was above the average body temperature of cattle. The results of the present study indicated that BST well reflects the thermal circumstances surrounding animals and may be used as one of the effective tools for precision cattle farming.


Sign in / Sign up

Export Citation Format

Share Document