Energy, protein, and substrate metabolism in simulated microgravity

1995 ◽  
Vol 269 (2) ◽  
pp. R252-R260 ◽  
Author(s):  
K. J. Acheson ◽  
J. Decombaz ◽  
C. Piguet-Welsch ◽  
F. Montigon ◽  
B. Decarli ◽  
...  

Whole body protein turnover and energy expenditure before and during an oral glucose tolerance test (1 g/kg body wt) were studied on separate occasions in six healthy young men before and during 3 days of simulated microgravity using the 6 degrees head-down tilt (HDT) method. After 42-47 h of HDT, basal insulin concentrations increased significantly from 9.4 +/- 1.9 to 13.1 +/- 0.1 microU/ml (P < 0.002). No significant differences in glycemia, insulinemia, or free fatty acid concentrations were observed in response to the oral glucose load. With HDT, increases were observed in basal postabsorptive resting metabolic rate (8%; P < 0.05), lipid oxidation (33 +/- 2 to 51 +/- 5 mg/min; P < 0.02), and the thermic effect of glucose (7.7 +/- 1 to 10.7 +/- 0.6%; not significant). Protein turnover (arithmetic mean of ammonia and urea flux rates) was unchanged by HDT, but a significant increase was seen when calculated from ammonia alone (P < 0.02). The present data show that HDT results in an increased energy requirement through elevations in both the basal metabolic rate and the thermic response to food ingestion. These changes may have been brought about by a cephalic shift of body fluids similar to that experienced in microgravity.

1990 ◽  
Vol 78 (6) ◽  
pp. 621-628 ◽  
Author(s):  
F. Carli ◽  
J. Webster ◽  
V. Ramachandra ◽  
M. Pearson ◽  
M. Read ◽  
...  

1. The present study was designed in an attempt to resolve conflicting views currently in the literature relating to the effect of surgery on various aspects of protein metabolism. 2. Sequential post-operative (2, 4 and 6 days) changes in whole-body protein turnover, forearm arteriovenous difference of plasma amino acids, glucose, lactate and free fatty acids, muscle concentration of free amino acids, RNA and protein, urinary nitrogen and 3-methylhistidine, plasma concentrations of insulin, cortisol and growth hormone, and resting metabolic rate, were measured in six patients undergoing uncomplicated elective total abdominal hysterectomy. 3. All patients received a constant daily diet, either orally or intravenously, based on 0.1 g of nitrogen/kg and an energy content of 1.1 times the resting metabolic rate for 7 days before and 6 days after surgery. 4. Whole-body protein turnover, synthesis and breakdown increased significantly 2 days after surgery (P <0.05) and returned towards pre-operative levels thereafter. 5. Forearm release of branched-chain amino acids and alanine, and efflux of glucose and lactate, were enhanced 4 days after surgery (P <0.05). Muscle glutamine and alanine concentrations were decreased on the fourth and sixth days after surgery (P <0.05). The RNA/protein ratio (indicating the capacity for protein synthesis) was unaltered. 6. A significant increase in urinary nitrogen and 3-methylhistidine was observed on days 3 and 4 after surgery (P <0.05). Thereafter, these parameters remained elevated, although failing to reach statistical significance. 7. The resting metabolic rate was significantly increased (P <0.05) 2 days after surgery but the respiratory quotient (0.77) was unchanged. 8. These data support the contention that whole-body protein synthesis and breakdown increase after surgery. Differences observed pre- and post-operatively between leucine kinetic estimates and other methods of quantifying protein metabolism indicate that only like methodologies should be compared.


1990 ◽  
Vol 258 (6) ◽  
pp. E990-E998 ◽  
Author(s):  
S. Welle ◽  
K. S. Nair

This study examined whether variability among healthy young adults in resting metabolic rate, normalized for the amount of metabolically active tissue (assessed by total body potassium), is related to protein turnover. Resting metabolic rate was measured by indirect calorimetry for 2 h in 26 men and 21 women, 19-33 yr old, with simultaneous estimation of protein turnover during a 4-h infusion of L-[1-13C]leucine. After adjusting metabolic rate for total body potassium, the standard deviation was only 89 kcal/day, or 5.5% of the average value. There was a high correlation between leucine flux (an index of proteolysis) and metabolic rate (r = 0.84) and between the nonoxidized portion of leucine flux (an index of protein synthesis) and metabolic rate (r = 0.83). This relationship was weaker, but still significant, after adjusting leucine metabolism and metabolic rate for total body potassium (r = 0.36 for leucine flux vs. metabolic rate, r = 0.33 for nonoxidized portion of leucine flux vs. metabolic rate, P less than 0.05). The regression analysis suggested that the contribution of protein turnover to resting metabolic rate was approximately 20% in an average subject. Metabolic rate and protein turnover were highest in the subjects with the greatest amount of body fat, even after accounting for differences in whole body potassium. Neither resting metabolic rate nor protein turnover was related to total or free concentrations of thyroxine or triiodothyronine, within the euthyroid range.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 77 (1) ◽  
pp. 93-97 ◽  
Author(s):  
Asha Badaloo ◽  
Alan A. Jackson ◽  
Farook Jahoor

1. Whole body protein turnover and resting metabolic rate were measured in six adults with homozygous sickle cell disease (genotype HbSS) and in six normal adults (genotype HbAA) of similar age. 2. Turnover was measured with prime/intermittent oral doses of [15N]glycine over 18 h and resting energy expenditure was measured by indirect calorimetry. 3. In HbSS, nitrogen flux (0.9 ± 0.08 g day−1 kg−1), protein synthesis (6.0 ± 0.5 g day−1 kg−1) and protein degradation (5.6 ± 0.5 g day−1 kg−1) were significantly increased compared with HbAA nitrogen (flux 0.5 ± 0.02 g day−1 kg−1, protein synthesis 3.2 ± 0.2 g day−1 kg−1 and protein degradation 2.8 ± 0.2 g day−1 kg−1). 4. Resting energy expenditure was significantly higher in HbSS compared with HbAA when expressed per unit of body weight (115 ± 3 and 94 ± 4 kJ day−1 kg−1, respectively) or weight 0.75 (317 ± 6 and 269 ± 8 kJ day−1 kg−0.75, respectively). 5. The increase in protein turnover and energy expenditure suggest that patients with HbSS exist in a hypermetabolic state that requires greater dietary energy compared with HbAA.


1988 ◽  
Vol 75 (3) ◽  
pp. 225-231 ◽  
Author(s):  
P. J. Pacy ◽  
J. S. Garrow ◽  
G. C. Ford ◽  
H. Merritt ◽  
D. Halliday

1. We have investigated the effect of an amino acid mixture (Varnin 14; 57.4 ±10.2 μmol h−1 kg−1) on whole-body leucine kinetics, calculated by a steady-state reciprocal pool model, and resting metabolic rate in eight postabsorptive normal subjects. 2. Vamin 14 infusion increased whole-body leucine flux (P < 0.001), leucine employed for protein synthesis (P < 0.001), leucine oxidation (P < 0.001), metabolic clearance rate of α-ketoisocaproic acid (P < 0.05) and levels of all three branched-chain amino acids (P < 0.001) compared with the basal situation. In contrast, whole-body proteolysis was reduced (P < 0.05). 3. Resting metabolic rate was increased during Vamin 14 infusion (P < 0.05) and was positively correlated with whole-body protein synthesis (n = 16, r = 0.6342, P < 0.01; y = 0.605x + 173.7), as was the change in metabolic rate with the change in protein synthesis (n = 8, r = 0.772, P < 0.05; y = 0.493x − 10.85). 4. Overall, Vamin 14 infusion was associated with increased blood glucose (P < 0.001), although the observed increase in plasma glucagon (t = 2.012) and plasma insulin (t = 1.683) failed to reach statistical significance. 5. These data lend a measure of support to the hypothesis that the apparent increase in whole-body protein synthesis in insulin-dependent diabetic (type I) subjects during insulin withdrawal may be substrate related.


1991 ◽  
Vol 81 (3) ◽  
pp. 419-425 ◽  
Author(s):  
M. J. Soares ◽  
L. S. Piers ◽  
P. S. Shetty ◽  
S. Robinson ◽  
A. A. Jackson ◽  
...  

1. Three groups of adult men were studied in Bangalore, India: two groups were controls who had been receiving an adequate diet. Of these, one group, designated ‘normal weight controls', had a mean body mass index of 22; the other group, ‘underweight controls', had a mean body mass index of 16.7. The third group consisted of poor labourers, whose daily food intake had been less than 10 MJ and whose mean body mass index was 16.6. Previous studies had shown that such men had a lower basal metabolic rate than well-nourished Indian control subjects. 2. The object of the present study was to find out whether a reduced rate of protein turnover, measured after a single dose of [15N]glycine, contributed to a lower basal metabolic rate. It was found, however, that after adjusting for body weight and fat-free mass by analysis of co-variance there was no significant difference in basal metabolic rate between the three groups. Adjusted rates of protein synthesis were higher in the underweight controls and the undernourished labourers than in the normal weight controls, but not significantly so. 3. Estimates based on creatinine excretion showed that within the fat-free mass the underweight groups had a higher proportion of non-muscle to muscle mass. This may explain the somewhat higher rates of protein turnover in these groups. 4. Nitrogen flux (Q) was determined from 15N abundance in two end products, urea (QU) and ammonia (QA). In the underweight and undernourished groups the ratio QU/QA was increased compared with the normal weight group. This fits in with the finding of a greater proportion of visceral mass in the underweight subjects and with the compartmental model of protein metabolism that we have previously proposed.


1997 ◽  
Vol 128 (2) ◽  
pp. 233-246 ◽  
Author(s):  
S. A. NEUTZE ◽  
J. M. GOODEN ◽  
V. H. ODDY

This study used an experimental model, described in a companion paper, to examine the effects of feed intake on protein turnover in the small intestine of lambs. Ten male castrate lambs (∼ 10 months old) were offered, via continuous feeders, either 400 (n = 5) or 1200 (n = 5) g/day lucerne chaff, and mean experimental liveweights were 28 and 33 kg respectively. All lambs were prepared with catheters in the cranial mesenteric vein (CMV), femoral artery (FA), jugular vein and abomasum, and a blood flow probe around the CMV. Cr-EDTA (0·139 mg Cr/ml, ∼ 0·2 ml/min) was infused abomasally for 24 h and L-[2,6-3H]phenylalanine (Phe) (420±9·35 μCi into the abomasum) and L-[U-14C]phenylalanine (49·6±3·59 μCi into the jugular vein) were also infused during the last 8 h. Blood from the CMV and FA was sampled during the isotope infusions. At the end of infusions, lambs were killed and tissue (n = 4) and digesta (n = 2) samples removed from the small intestine (SI) of each animal. Transfers of labelled and unlabelled Phe were measured between SI tissue, its lumen and blood, enabling both fractional and absolute rates of protein synthesis and gain to be estimated.Total SI mass increased significantly with feed intake (P < 0·05), although not on a liveweight basis. Fractional rates of protein gain in the SI tended to increase (P = 0·12) with feed intake; these rates were −16·2 (±13·7) and 23·3 (±15·2) % per day in lambs offered 400 and 1200 g/day respectively. Mean protein synthesis and fractional synthesis rates (FSR), calculated from the mean retention of 14C and 3H in SI tissue, were both positively affected by feed intake (0·01 < P < 0·05). The choice of free Phe pool for estimating precursor specific radioactivity (SRA) for protein synthesis had a major effect on FSR. Assuming that tissue free Phe SRA represented precursor SRA, mean FSR were 81 (±15) and 145 (±24) % per day in lambs offered 400 and 1200 g/day respectively. Corresponding estimates for free Phe SRA in the FA and CMV were 28 (±2·9) and 42 (±3·5) % per day on 400 g/day, and 61 (±2·9) and 94 (±6·0) on 1200 g/day. The correct value for protein synthesis was therefore in doubt, although indirect evidence suggested that blood SRA (either FA or CMV) may be closest to true precursor SRA. This evidence included (i) comparison with flooding dose estimates of FSR, (ii) comparison of 3H[ratio ]14C Phe SRA in free Phe pools with this ratio in SI protein, and (iii) the proportion of SI energy use associated with protein synthesis.Using the experimental model, the proportion of small intestinal protein synthesis exported was estimated as 0·13–0·27 (depending on the choice of precursor) and was unaffected by feed intake. The contribution of the small intestine to whole body protein synthesis tended to be higher in lambs offered 1200 g/day (0·21) than in those offered 400 g/day (0·13). The data obtained in this study suggested a role for the small intestine in modulating amino acid supply with changes in feed intake. At high intake (1200 g/day), the small intestine increases in mass and CMV uptake of amino acids is less than absorption from the lumen, while at low intake (400 g/day), this organ loses mass and CMV uptake of amino acids exceeds that absorbed. The implications of these findings are discussed.


Metabolism ◽  
2005 ◽  
Vol 54 (9) ◽  
pp. 1162-1167 ◽  
Author(s):  
Xin Huang ◽  
Marc R. Blackman ◽  
Karen Herreman ◽  
Katharine M. Pabst ◽  
S. Mitchell Harman ◽  
...  

1995 ◽  
Vol 61 (1) ◽  
pp. 69-74 ◽  
Author(s):  
D L Pannemans ◽  
D Halliday ◽  
K R Westerterp ◽  
A D Kester

1999 ◽  
Vol 276 (6) ◽  
pp. E1092-E1098 ◽  
Author(s):  
Farook Jahoor ◽  
Brian Gazzard ◽  
Gary Phillips ◽  
Danny Sharpstone ◽  
Melanie Delrosario ◽  
...  

Although several studies have shown that asymptomatic human immunodeficiency virus infection elicits an increase in whole body protein turnover, it is not known whether this increased protein turnover includes changes in the kinetics of acute-phase proteins (APPs). To answer this question, we measured 1) the plasma concentrations of four positive (C-reactive protein, α1-antitrypsin, haptoglobin, and fibrinogen) and four negative APPs [albumin, high-density lipoprotein (HDL)-apolipoprotein (apo) A1, transthyretin, and retinol-binding protein] and 2) the fractional (FSR) and absolute (ASRs) synthesis rates of three positive and three negative APPs using a constant intravenous infusion of [2H5]phenylalanine in five subjects with symptom-free acquired immunodeficiency syndrome (AIDS) and five noninfected control subjects. Compared with the values of the controls, the plasma concentrations, FSRs, and ASRs of most positive APPs were higher in the AIDS group. The negative APPs had faster FSRs in the AIDS group, there was no difference between the ASRs of the two groups, and only HDL-apoA1 had a lower plasma concentration. These results suggest that symptom-free AIDS elicits an APP response that is different from bacterial infections, as the higher concentrations and faster rates of synthesis of the positive APPs are not accompanied by lower concentrations and slower rates of synthesis of most of the negative APPs.


Sign in / Sign up

Export Citation Format

Share Document