Cannabinoid receptor 1 mediates high glucose-induced apoptosis via endoplasmic reticulum stress in primary cultured rat mesangial cells

2011 ◽  
Vol 301 (1) ◽  
pp. F179-F188 ◽  
Author(s):  
Jae Cheong Lim ◽  
Seul Ki Lim ◽  
Min Jung Park ◽  
Gye Yeop Kim ◽  
Ho Jae Han ◽  
...  

The endocannabinoid system in animals and humans is involved in the onset of diverse diseases, including obesity and diabetic nephropathy, which is a major end-stage renal disease characterized by high glucose (HG)-induced apoptosis of mesangial cells. Endocannabinoids induce physiological and behavioral effects by activating two specific receptors, cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R). However, the pathophysiology of CB1R in diabetic nephropathy has not been elucidated. We investigated the effects of HG on CB1R expression and its signaling pathways in primary cultured rat mesangial cells. HG significantly increased CB1R mRNA and protein levels in a time-dependent manner and induced CB1R internalization. NF-κB and cPLA2 were involved in the HG-induced increase in CB1R levels. Using a CB1R antagonist (AM251) and CB1 siRNA transfection, we showed that HG-induced CB1R is linked to apoptosis. Specifically, HG inhibited the expression of GRP78, but induced increases in endoplasmic reticulum (ER) stress proteins, including phosphorylated (p)-protein kinase-like ER-associated kinase, p-eukaryotic initiation factor 2α, p-activating transcription factor-4, and C/EBP homologous protein. In addition, HG increased the Bax/Bcl-2 ratio and increased the amounts of cleaved poly(ADP-ribose) polymerase and caspase-3. These apoptotic effects were prevented by AM251 and by the downregulation of CB1R expression by small interfering RNA. We propose a mechanism by which blockade of CB1R attenuates HG-induced apoptosis in rat mesangial cells. Our findings suggest that blockade of CB1R may be a potential therapy in diabetic nephropathy.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hong Feng ◽  
Junling Gu ◽  
Fang Gou ◽  
Wei Huang ◽  
Chenlin Gao ◽  
...  

While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP), NLRP3, and IL-1βwas observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1βwere significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1βinflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Le Zhang ◽  
Qian Dai ◽  
Lanlan Hu ◽  
Hua Yu ◽  
Jing Qiu ◽  
...  

Purpose. Hyperoside, a flavonoid isolated from conventional medicinal herbs, has been demonstrated to exert a significant protective effect in diabetic nephropathy. This study aimed to determine the underlying mechanisms, by which hyperoside inhibits high glucose-(HG-) induced proliferation in mouse renal mesangial cells. Methods. Mouse glomerular mesangial cells line (SV40-MES13) was used to study the inhibitory effect of hyperoside on cell proliferation induced by 30 mM glucose, which was used to simulate a diabetic condition. Viable cell count was assessed using the Cell Counting Kit-8 and by the 5-ethynyl-20-deoxyuridine incorporation assay. The underlying mechanism involving miRNA-34a was further investigated by quantitative RT-PCR and transfection with miRNA-34a agomir. The phosphorylation levels of extracellular signal-regulated kinases (ERKs) and cAMP-response element-binding protein (CREB) were measured by Western blotting. The binding region and the critical binding sites of CREB in the miRNA-34a promoter were investigated by the chromatin immunoprecipitation assay and luciferase reporter assay, respectively. Results. We found that hyperoside could significantly decrease HG-induced proliferation of SV40-MES13 cells in a dose-dependent manner, without causing obvious cell death. In addition, hyperoside inhibited the activation of ERK pathway and phosphorylation of its downstream transcriptional factor CREB, as well as the miRNA-34a expression. We further confirmed that CREB-mediated regulation of miRNA-34a is dependent on the direct binding to specific sites in the promoter region of miRNA-34a. Conclusion. Our cumulative results suggested that hyperoside inhibits the proliferation of SV40-MES13 cells through the suppression of the ERK/CREB/miRNA-34a signaling pathway, which provides new insight to the current investigation on therapeutic strategies for diabetic nephropathy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252761
Author(s):  
Shaoqiang Wang ◽  
Pengfei Yi ◽  
Na Wang ◽  
Min Song ◽  
Wenhui Li ◽  
...  

Long non-coding RNAs (lncRNAs) are important regulators in diabetic nephropathy. In this study, we investigated the potential role of lncRNA TUG1 in regulating endoplasmic reticulum stress (ERS)-mediated apoptosis in high glucose induced renal tubular epithelial cells. Human renal tubular epithelial cell line HK-2 was challenged with high glucose following transfection with lncRNA TUG1, miR-29c-3p mimics or inhibitor expression plasmid, either alone or in combination, for different experimental purposes. Potential binding effects between TUG1 and miR-29c-3p, as well as between miR-29c-3p and SIRT1 were verified. High glucose induced apoptosis and ERS in HK-2 cells, and significantly decreased TUG1 expression. Overexpressed TUG1 could prevent high glucose-induced apoptosis and alleviated ERS via negatively regulating miR-29c-3p. In contrast, miR-29c-3p increased HK-2 cells apoptosis and ERS upon high glucose-challenge. SIRT1 was a direct target gene of miR-29c-3p in HK-2 cells, which participated in the effects of miR-29c-3p on HK-2 cells. Mechanistically, TUG1 suppressed the expression of miR-29c-3p, thus counteracting its function in downregulating the level of SIRT1. TUG1 regulates miR-29c-3p/SIRT1 and subsequent ERS to relieve high glucose induced renal epithelial cells injury, and suggests a potential role for TUG1 as a promising diagnostic marker of diabetic nephropathy.


Reproduction ◽  
2020 ◽  
Vol 160 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Marta Almada ◽  
Lia Costa ◽  
Bruno Fonseca ◽  
Patrícia Alves ◽  
Jorge Braga ◽  
...  

Proliferation, differentiation and apoptosis of trophoblast cells are required for normal placental development. Impairment of those processes may lead to pregnancy-related diseases. Disruption of endoplasmic reticulum (ER) homeostasis has been associated with several reproductive pathologies including recurrent pregnancy loss and preeclampsia. In the unfolded protein response (UPR), specific ER-stress signalling pathways are activated to restore ER homeostasis, but if the adaptive response fails, apoptosis is triggered. Protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and Activating transcription factor 6 (ATF6) are central players in UPR and in ER-stress-induced apoptosis, as well as downstream transcription factors, as C/EBP homologous protein (CHOP). Our previous studies have shown that the endocannabinoid 2-arachidonoylglycerol (2-AG) modulates trophoblast cell turnover. Nevertheless, the role of ER-stress on 2-AG induced apoptosis and cannabinoid signalling in trophoblast has never been addressed. In this work, we used BeWo cells and human primary cytotrophoblasts isolated from term-placenta. The expression of ER-stress markers was analysed by qRT-PCR and Western blotting. ROS generation was assessed by fluorometric methods, while apoptosis was detected by the evaluation of caspase -3/-7 activities and Poly (ADP-ribose) polymerase (PARP) cleavage. Our findings indicate that 2-AG is able to induce ER-stress and apoptosis. Moreover, the eukaryotic initiation factor 2 (eIF2α)/CHOP pathway involved in ER-stress-induced apoptosis is triggered through a mechanism dependent on cannabinoid receptor CB2 activation. The results bring novel insights on the importance of ER-stress and cannabinoid signalling on 2-AG mechanisms of action in placenta.


2017 ◽  
Vol 41 (3) ◽  
pp. 1035-1043 ◽  
Author(s):  
Tao Ding ◽  
Wei Chen ◽  
Juan Li ◽  
Jiarong Ding ◽  
Xiaobin Mei ◽  
...  

Background/Aims: Overproliferation of mesangial cells was believed to play an important role in the progress of diabetic nephropathy, one of the primary complications of diabetes. Hydrogen sulfide (H2S), a well-known and pungent gas with the distinctive smell of rotten eggs, was discovered to play a protective role in diabetic nephropathy. Methods: MTT assay was used to examine the viability of mesangial cells. Small interfering RNA was used to knock down the expression of TLR4 while specific inhibitor LY294002 to suppress the function of PI3K. H2S generation rate was determined by a H2S micro-respiration sensor. Results: Glucose of 25mM induced significant mesangial cells proliferation, which was accomplished by significantly inhibited endogenous H2S synthesis. And exogenous H2S treatment by NaHS markedly mitigated the overproliferation of mouse mesangial cells. Furthermore, it was found that H2S deficiency could result in TLR4 activation. And H2S supplementation remarkably inhibited TLR4 expression and curbed the mesangial cell overproliferation. Besides, PI3K/Akt pathway inhibition also significantly ameliorated the cell overproliferation. Conclusion: High glucose (HG) induces mouse mesangial cell overproliferation via inhibition of hydrogen sulfide synthesis in a TLR-4-dependent manner. And PI3K/Akt pathway might also play a vital part in the HG-induced mesangial cell overproliferation.


2020 ◽  
Vol 318 (3) ◽  
pp. F673-F682
Author(s):  
Parisa Yazdizadeh Shotorbani ◽  
Sarika Chaudhari ◽  
Yu Tao ◽  
Leonidas Tsiokas ◽  
Rong Ma

Overproduction of extracellular matrix proteins, including fibronectin by mesangial cells (MCs), contributes to diabetic nephropathy. Inhibitor of myogenic differentiation family isoform a (I-mfa) is a multifunctional cytosolic protein functioning as a transcriptional modulator or plasma channel protein regulator. However, its renal effects are unknown. The present study was conducted to determine whether I-mfa regulated fibronectin production by glomerular MCs. In human MCs, overexpression of I-mfa significantly increased fibronectin abundance. Silencing I-mfa significantly reduced the level of fibronectin mRNA and blunted transforming growth factor-β1-stimulated production of fibronectin. We further found that high glucose increased I-mfa protein content in a time course (≥48 h) and concentration (≥25 mM)-dependent manner. Although high glucose exposure increased I-mfa at the protein level, it did not significantly alter transcripts of I-mfa in MCs. Furthermore, the abundance of I-mfa protein was significantly increased in the renal cortex of rats with diabetic nephropathy. The I-mfa protein level was also elevated in the glomerulus of mice with diabetic kidney disease. However, there was no significant difference in glomerular I-mfa mRNA levels between mice with and without diabetic nephropathy. Moreover, H2O2 significantly increased I-mfa protein abundance in a dose-dependent manner in cultured human MCs. The antioxidants polyethylene glycol-catalase, ammonium pyrrolidithiocarbamate, and N-acetylcysteine significantly blocked the high glucose-induced increase of I-mfa protein. Taken together, our results suggest that I-mfa, increased by high glucose/diabetes through the production of reactive oxygen species, stimulates fibronectin production by MCs.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Li Liu ◽  
Chenlin Gao ◽  
Guo Chen ◽  
Xia Li ◽  
Jia Li ◽  
...  

The involvement of the Notch signaling pathway in the cellular differentiation of the mammalian kidney is established. Recently, the dysregulation of Notch signaling molecules has been identified in acute and chronic renal injuries, fibrosis models, and diabetic kidney biopsies. The canonical Notch ligand , Jagged1, is upregulated in a transforming growth factor-beta- (TGF-β-) dependent manner during chronic kidney disease. TGF-β, a central mediator of renal fibrosis, also is a major contributor to the development of diabetic nephropathy. To explore the roles and possible mechanisms of Notch signaling molecules in the pathogenesis of diabetic nephropathy, we exposed cultured rat mesangial cells to aγ-secretase inhibitor (DAPT) or high glucose and measured the expression of Notch signaling molecules and the fibrosis index. Notch pathway-related molecules, TGF-β, and fibronectin increased with exposure to high glucose and decreased with DAPT treatment. Our results suggest that the Notch signaling pathway may precipitate diabetic nephropathy via TGF-βactivation.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Yun ◽  
Jinyu Ren ◽  
Yufei Liu ◽  
Lijuan Dai ◽  
Liqun Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. Methods RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. Results Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. Conclusion All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.


Sign in / Sign up

Export Citation Format

Share Document