scholarly journals The endocannabinoid 2-arachidonoylglycerol promotes endoplasmic reticulum stress in placental cells

Reproduction ◽  
2020 ◽  
Vol 160 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Marta Almada ◽  
Lia Costa ◽  
Bruno Fonseca ◽  
Patrícia Alves ◽  
Jorge Braga ◽  
...  

Proliferation, differentiation and apoptosis of trophoblast cells are required for normal placental development. Impairment of those processes may lead to pregnancy-related diseases. Disruption of endoplasmic reticulum (ER) homeostasis has been associated with several reproductive pathologies including recurrent pregnancy loss and preeclampsia. In the unfolded protein response (UPR), specific ER-stress signalling pathways are activated to restore ER homeostasis, but if the adaptive response fails, apoptosis is triggered. Protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and Activating transcription factor 6 (ATF6) are central players in UPR and in ER-stress-induced apoptosis, as well as downstream transcription factors, as C/EBP homologous protein (CHOP). Our previous studies have shown that the endocannabinoid 2-arachidonoylglycerol (2-AG) modulates trophoblast cell turnover. Nevertheless, the role of ER-stress on 2-AG induced apoptosis and cannabinoid signalling in trophoblast has never been addressed. In this work, we used BeWo cells and human primary cytotrophoblasts isolated from term-placenta. The expression of ER-stress markers was analysed by qRT-PCR and Western blotting. ROS generation was assessed by fluorometric methods, while apoptosis was detected by the evaluation of caspase -3/-7 activities and Poly (ADP-ribose) polymerase (PARP) cleavage. Our findings indicate that 2-AG is able to induce ER-stress and apoptosis. Moreover, the eukaryotic initiation factor 2 (eIF2α)/CHOP pathway involved in ER-stress-induced apoptosis is triggered through a mechanism dependent on cannabinoid receptor CB2 activation. The results bring novel insights on the importance of ER-stress and cannabinoid signalling on 2-AG mechanisms of action in placenta.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xuan Yuan ◽  
Defang Li ◽  
Hong Zhao ◽  
Jiangtao Jiang ◽  
Penglong Wang ◽  
...  

Licochalcone A (LCA), a licorice chalconoid, is considered to be a bioactive agent with chemopreventive potential. This study investigated the mechanisms involved in LCA-induced apoptosis in human bladder cancer T24 cells. LCA significantly inhibited cells proliferation, increased reactive oxygen species (ROS) levels, and caused T24 cells apoptosis. Moreover, LCA induced mitochondrial dysfunction, caspase-3 activation, and poly-ADP-ribose polymerase (PARP) cleavage, which displayed features of mitochondria-dependent apoptotic signals. Besides, exposure of T24 cells to LCA triggered endoplasmic reticulum (ER) stress; as indicated by the enhancement in 78 kDa glucose-regulated protein (GRP 78), growth arrest and DNA damage-inducible gene 153/C/EBP homology protein (GADD153/CHOP) expression, ER stress-dependent apoptosis is caused by the activation of ER-specific caspase-12. All the findings from our study suggest that LCA initiates mitochondrial ROS generation and induces oxidative stress that consequently causes T24 cell apoptosis via the mitochondria-dependent and the ER stress-triggered signaling pathways.


2009 ◽  
Vol 83 (8) ◽  
pp. 3463-3474 ◽  
Author(s):  
Baoqin Xuan ◽  
Zhikang Qian ◽  
Emi Torigoi ◽  
Dong Yu

ABSTRACT The endoplasmic reticulum (ER) is a key organelle involved in sensing and responding to stressful conditions, including those resulting from infection of viruses, such as human cytomegalovirus (HCMV). Three signaling pathways collectively termed the unfolded protein response (UPR) are activated to resolve ER stress, but they will also lead to cell death if the stress cannot be alleviated. HCMV is able to modulate the UPR to promote its infection. The specific viral factors involved in such HCMV-mediated modulation, however, were unknown. We previously showed that HCMV protein pUL38 was required to maintain the viability of infected cells, and it blocked cell death induced by thapsigargin. Here, we report that pUL38 is an HCMV-encoded regulator to modulate the UPR. In infection, pUL38 allowed HCMV to upregulate phosphorylation of PKR-like ER kinase (PERK) and the α subunit of eukaryotic initiation factor 2 (eIF-2α), as well as induce robust accumulation of activating transcriptional factor 4 (ATF4), key components of the PERK pathway. pUL38 also allowed the virus to suppress persistent phosphorylation of c-Jun N-terminal kinase (JNK), which was induced by the inositol-requiring enzyme 1 pathway. In isolation, pUL38 overexpression elevated eIF-2α phosphorylation, induced ATF4 accumulation, limited JNK phosphorylation, and suppressed cell death induced by both thapsigargin and tunicamycin, two drugs that induce ER stress by different mechanisms. Importantly, ATF4 overexpression and JNK inhibition significantly reduced cell death in pUL38-deficient virus infection. Thus, pUL38 targets ATF4 expression and JNK activation, and this activity appears to be critical for protecting cells from ER stress induced by HCMV infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emily M. Nakada ◽  
Rui Sun ◽  
Utako Fujii ◽  
James G. Martin

The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kinnosuke Yahiro ◽  
Kohei Ogura ◽  
Hiroyasu Tsutsuki ◽  
Sunao Iyoda ◽  
Makoto Ohnishi ◽  
...  

AbstractLocus for Enterocyte Effacement (LEE)-positive Shiga-toxigenic Escherichia coli (STEC) contributes to many global foodborne diseases, with infection characterized by severe gastrointestinal symptoms, including bloody diarrhea. The incidence of LEE-negative STEC-mediated disease is also increasing globally. Subtilase cytotoxin (SubAB) is released by some LEE-negative STEC strains. It cleaves BiP, which is a chaperone protein located in the endoplasmic reticulum (ER), thereby causing apoptosis induced by ER stress. To date, the apoptotic signaling pathway mediated by SubAB has not been identified. In the current study, RNA-seq analysis showed that SubAB significantly induced the expression of Kelch domain containing 7B (KLHDC7B). We explored the role of KLHDC7B in the SubAB-induced apoptotic pathway. SubAB-induced KLHDC7B mRNA expression was increased after 12 h of incubation of toxin with HeLa cells. KLHDC7B expression was downregulated by knockdown of PKR-like endoplasmic reticulum kinase (PERK), CEBP homologous protein (CHOP), activating transcription factor 4 (ATF4), and CEBP β (CEBPB). KLHDC7B knockdown suppressed SubAB-stimulated CHOP expression, poly(ADP-ribose) polymerase (PARP) cleavage, and cytotoxicity. The over-expressed KLHDC7B was localized to the nucleus and cytosolic fractions. Next, we used RNA-seq to analyze the effect of KLHDC7B knockdown on apoptosis induced by SubAB, and found that the gene encoding for the pro-apoptotic Bcl-2 family protein, Harakiri (HRK), was upregulated in SubAB-treated control cells. However, this effect was not observed in SubAB-treated KLHDC7B-knockdown cells. Therefore, we identified the pathway through which SubAB-induced KLHDC7B regulates HRK expression, which is essential for apoptosis in toxin-mediated ER stress.


2019 ◽  
Vol 128 (6_suppl) ◽  
pp. 117S-124S ◽  
Author(s):  
Channy Park ◽  
Hyewon Lim ◽  
Sung K. Moon ◽  
Raekil Park

Objectives: Auditory neuropathy due to toxicity mechanism of pyridoxine has not yet been fully documented. Therefore, the present study explored a direct mechanism underlying the effects of pyridoxine on auditory neuropathy in organ of Corti (OC) explants ex vivo and cochlear neuroblast cell line, VOT-33 in vitro. Methods: Primary OC explants containing spiral ganglion neurons and cultured VOT-33 cells were treated with pyridoxine. Results: In nerve fiber of primary OC explants, pyridoxine decreased staining for NF200, a neuro-cytoskeletal protein. We also found that pyridoxine-induced VOT-33 apoptosis, as indicated by accumulation of the sub-G0/G1 fraction, caspase-3 activation, and PARP cleavage. In addition, pyridoxine induced reactive oxygen species (ROS) generation and alteration of mitochondrial membrane potential transition (MPT), including Bcl-2 family protein expression and consequently Ca2+ accumulation and changes of endoplasmic reticulum (ER) stress-related protein expression such as phospho-PERK, caspase-12, Grp78, and CHOP. Conclusion: Pyridoxine preferentially induced severe cell death on nerve fiber in primary OC explants and markedly increased apoptotic cell death via mitochondria-mediated ER stress in VOT-33 cells.


2017 ◽  
Vol 312 (3) ◽  
pp. H355-H367 ◽  
Author(s):  
M. L. Battson ◽  
D. M. Lee ◽  
C. L. Gentile

The vascular endothelium plays a critical role in cardiovascular homeostasis, and thus identifying the underlying causes of endothelial dysfunction has important clinical implications. In this regard, the endoplasmic reticulum (ER) has recently emerged as an important regulator of metabolic processes. Dysfunction within the ER, broadly termed ER stress, evokes the unfolded protein response (UPR), an adaptive pathway that aims to restore ER homeostasis. Although the UPR is the first line of defense against ER stress, chronic activation of the UPR leads to cell dysfunction and death and has recently been implicated in the pathogenesis of endothelial dysfunction. Numerous risk factors for endothelial dysfunction can induce ER stress, which may in turn disrupt endothelial function via direct effects on endothelium-derived vasoactive substances or by activating other pathogenic cellular networks such as inflammation and oxidative stress. This review summarizes the available data linking ER stress to endothelial dysfunction.


2011 ◽  
Vol 301 (1) ◽  
pp. F179-F188 ◽  
Author(s):  
Jae Cheong Lim ◽  
Seul Ki Lim ◽  
Min Jung Park ◽  
Gye Yeop Kim ◽  
Ho Jae Han ◽  
...  

The endocannabinoid system in animals and humans is involved in the onset of diverse diseases, including obesity and diabetic nephropathy, which is a major end-stage renal disease characterized by high glucose (HG)-induced apoptosis of mesangial cells. Endocannabinoids induce physiological and behavioral effects by activating two specific receptors, cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R). However, the pathophysiology of CB1R in diabetic nephropathy has not been elucidated. We investigated the effects of HG on CB1R expression and its signaling pathways in primary cultured rat mesangial cells. HG significantly increased CB1R mRNA and protein levels in a time-dependent manner and induced CB1R internalization. NF-κB and cPLA2 were involved in the HG-induced increase in CB1R levels. Using a CB1R antagonist (AM251) and CB1 siRNA transfection, we showed that HG-induced CB1R is linked to apoptosis. Specifically, HG inhibited the expression of GRP78, but induced increases in endoplasmic reticulum (ER) stress proteins, including phosphorylated (p)-protein kinase-like ER-associated kinase, p-eukaryotic initiation factor 2α, p-activating transcription factor-4, and C/EBP homologous protein. In addition, HG increased the Bax/Bcl-2 ratio and increased the amounts of cleaved poly(ADP-ribose) polymerase and caspase-3. These apoptotic effects were prevented by AM251 and by the downregulation of CB1R expression by small interfering RNA. We propose a mechanism by which blockade of CB1R attenuates HG-induced apoptosis in rat mesangial cells. Our findings suggest that blockade of CB1R may be a potential therapy in diabetic nephropathy.


2011 ◽  
Vol 22 (6) ◽  
pp. 736-747 ◽  
Author(s):  
Etsushi Matsushita ◽  
Naoya Asai ◽  
Atsushi Enomoto ◽  
Yoshiyuki Kawamoto ◽  
Takuya Kato ◽  
...  

Continued exposure of endothelial cells to mechanical/shear stress elicits the unfolded protein response (UPR), which enhances intracellular homeostasis and protect cells against the accumulation of improperly folded proteins. Cells commit to apoptosis when subjected to continuous and high endoplasmic reticulum (ER) stress unless homeostasis is maintained. It is unknown how endothelial cells differentially regulate the UPR. Here we show that a novel Girdin family protein, Gipie (78 kDa glucose-regulated protein [GRP78]-interacting protein induced by ER stress), is expressed in endothelial cells, where it interacts with GRP78, a master regulator of the UPR. Gipie stabilizes the interaction between GRP78 and the ER stress sensor inositol-requiring protein 1 (IRE1) at the ER, leading to the attenuation of IRE1-induced c-Jun N-terminal kinase (JNK) activation. Gipie expression is induced upon ER stress and suppresses the IRE1-JNK pathway and ER stress-induced apoptosis. Furthermore we found that Gipie expression is up-regulated in the neointima of carotid arteries after balloon injury in a rat model that is known to result in the induction of the UPR. Thus our data indicate that Gipie/GRP78 interaction controls the IRE1-JNK signaling pathway. That interaction appears to protect endothelial cells against ER stress-induced apoptosis in pathological contexts such as atherosclerosis and vascular endothelial dysfunction.


2016 ◽  
Vol 397 (7) ◽  
pp. 649-656 ◽  
Author(s):  
Alexander R. van Vliet ◽  
Abhishek D. Garg ◽  
Patrizia Agostinis

AbstractThe endoplasmic reticulum (ER) is the main coordinator of intracellular Ca2+signaling, protein synthesis, and folding. The ER is also implicated in the formation of contact sites with other organelles and structures, including mitochondria, plasma membrane (PM), and endosomes, thereby orchestrating through interorganelle signaling pathways, a variety of cellular responses including Ca2+homeostasis, metabolism, and cell death signaling. Upon loss of its folding capacity, incited by a number of stress signals including those elicited by various anticancer therapies, the unfolded protein response (UPR) is launched to restore ER homeostasis. The ER stress sensor protein kinase RNA-like ER kinase (PERK) is a key mediator of the UPR and its role during ER stress has been largely recognized. However, growing evidence suggests that PERK may govern signaling pathways through UPR-independent functions. Here, we discuss emerging noncanonical roles of PERK with particular relevance for the induction of danger or immunogenic signaling and interorganelle communication.


2007 ◽  
Vol 293 (4) ◽  
pp. E1002-E1011 ◽  
Author(s):  
Qin Xu ◽  
Noriyuki Ohara ◽  
Jin Liu ◽  
Koji Nakabayashi ◽  
Deborah DeManno ◽  
...  

A recent clinical trial (Chwalisz K, Larsen L, Mattia-Goldberg C, Edmonds A, Elger W, Winkel CA. Fertil Steril 87: 1399–1412, 2007) has demonstrated that the selective progesterone receptor modulator asoprisnil efficiently causes the shrinkage of uterine leiomyoma. The present study was conducted to examine whether asoprisnil elicits endoplasmic reticulum (ER) stress-induced apoptosis in cultured human uterine leiomyoma cells. After subculture in phenol red-free DMEM supplemented with 10% FBS for 120 h, cultured cells were stepped down to serum-free conditions with or without graded concentrations of asoprisnil. ER stress-associated and apoptosis-related proteins were assessed by reverse transcription-PCR analysis or Western blot analysis. RNA interference of growth-arrest- and DNA-damage-inducible gene 153 ( GADD153) was performed using small interfering RNA. Terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate nick end labeling (TUNEL)-positive rates were assessed by TUNEL assay. Compared with untreated control cultures, treatment with 10−7 M asoprisnil significantly ( P < 0.05) increased the protein contents of ubiquitin at 2 h and phospho-double-stranded RNA-activated protein kinase-like ER kinase, phospho-eukaryotic initiation factor 2α, activating transcription factor 4, and glucose-regulated protein 78 kDa at 4 h, followed by the significant ( P < 0.05) increase in GADD153 protein content at 6 h and cleaved poly(adenosine 5′-diphosphate ribose)polymerase (PARP) at 8 h. RNA interference of GADD153 suppressed protein contents of asoprisnil-induced cleaved PARP, Bax, Bak, GADD34, and tribbles-related protein 3 (TRB3) and TUNEL-positive rate but attenuated asoprisnil-induced reduction in Bcl-2 protein content in cultured leiomyoma cells. These results suggest that asoprisnil elicits ER stress-induced apoptosis in cultured leiomyoma cells and that GADD153 plays a role in asoprisnil-induced apoptosis by modulating the Bcl-2 family of proteins, GADD34, and TRB3.


Sign in / Sign up

Export Citation Format

Share Document