scholarly journals Mechanisms underlying angiotensin II-induced calcium oscillations

2008 ◽  
Vol 295 (2) ◽  
pp. F568-F584 ◽  
Author(s):  
Aurélie Edwards ◽  
Thomas L. Pallone

To gain insight into the mechanisms that underlie angiotensin II (ANG II)-induced cytoplasmic Ca2+ concentration ([Ca]cyt) oscillations in medullary pericytes, we expanded a prior model of ion fluxes. ANG II stimulation was simulated by doubling maximal inositol trisphosphate (IP3) production and imposing a 90% blockade of K+ channels. We investigated two configurations, one in which ryanodine receptors (RyR) and IP3 receptors (IP3R) occupy a common store and a second in which they reside on separate stores. Our results suggest that Ca2+ release from stores and import from the extracellular space are key determinants of oscillations because both raise [Ca] in subplasmalemmal spaces near RyR. When the Ca2+-induced Ca2+ release (CICR) threshold of RyR is exceeded, the ensuing Ca2+ release is limited by Ca2+ reuptake into stores and export across the plasmalemma. If sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps do not remain saturated and sarcoplasmic reticulum Ca2+ stores are replenished, that phase is followed by a resumption of leak from internal stores that leads either to [Ca]cyt elevation below the CICR threshold (no oscillations) or to elevation above it (oscillations). Our model predicts that oscillations are more prone to occur when IP3R and RyR stores are separate because, in that case, Ca2+ released by RyR during CICR can enhance filling of adjacent IP3 stores to favor a high subsequent leak that generates further CICR events. Moreover, the existence or absence of oscillations depends on the set points of several parameters, so that biological variation might well explain the presence or absence of oscillations in individual pericytes.

1991 ◽  
Vol 261 (1) ◽  
pp. C77-C85 ◽  
Author(s):  
D. C. Kem ◽  
E. I. Johnson ◽  
A. M. Capponi ◽  
D. Chardonnens ◽  
U. Lang ◽  
...  

The effect of angiotensin II (ANG II) on cytosolic free Ca2+ concentration ([Ca2+]i) was studied in cultured neonatal rat ventricular myocytes. [Ca2+]i was estimated in groups of one to three cells by dual-wavelength microfluorometry or in cell populations using conventional fluorometry. ANG II (10(-8) M) produced an acute short-lived increase over the control basal diastolic [Ca2+]i and increased the frequency of the [Ca2+]i transients. The amplitude of the [Ca2+]i transients was decreased to 64.4% of basal values. The effect of ANG II on [Ca2+]i was blocked by the selective AT1 receptor subtype antagonist Du Pont 753 but not by the AT2 antagonist PD 123319. Removal of extracellular Ca2+ or blockade of voltage-gated Ca2+ channels in cells cultured for 5-7 days abolished the [Ca2+]i transients, but only partially diminished the effect of ANG II on [Ca2+]i. Thapsigargin, an inhibitor of sarcoplasmic reticulum Ca(2+)-Mg(2+)-ATPase, reduced or abolished the [Ca2+]i response to ANG II. Phorbol 12-myristate 13-acetate (PMA), 10(-6) and 10(-7) M, also decreased the amplitude of the Ca2+ transients similar to ANG II. Pretreatment with 10(-6) M PMA or 10(-6) M 1-oleoyl-2-acetyl-glycerol (OAG) inhibited the initial rise in [Ca2+]i and the Ca2+ transients. Thus ANG II produces an acute rise in [Ca2+]i which is derived predominantly from sarcoplasmic reticulum intracellular stores. This acute effect is followed by a significant reduction in the amplitude for the Ca2+ transient and may be mediated by activation of protein kinase C.


2018 ◽  
Vol 5 (2) ◽  
pp. 171462 ◽  
Author(s):  
Xudong Chen ◽  
Yundi Feng ◽  
Yunlong Huo ◽  
Wenchang Tan

Ca 2+ sparks and Ca 2+ quarks, arising from clustered and rogue ryanodine receptors (RyRs), are significant Ca 2+ release events from the junctional sarcoplasmic reticulum (JSR). Based on the anomalous subdiffusion of Ca 2+ in the cytoplasm, a mathematical model was developed to investigate the effects of rogue RyRs on Ca 2+ sparks in cardiac myocytes. Ca 2+ quarks and sparks from the stochastic opening of rogue and clustered RyRs are numerically reproduced and agree with experimental measurements. It is found that the stochastic opening Ca 2+ release units (CRUs) of clustered RyRs are regulated by free Ca 2+ concentration in the JSR lumen (i.e. [Ca 2+ ] lumen ). The frequency of spontaneous Ca 2+ sparks is remarkably increased by the rogue RyRs opening at high [Ca 2+ ] lumen , but not at low [Ca 2+ ] lumen . Hence, the opening of rogue RyRs contributes to the formation of Ca 2+ sparks at high [Ca 2+ ] lumen . The interplay of Ca 2+ sparks and Ca 2+ quarks has been discussed in detail. This work is of significance to provide insight into understanding Ca 2+ release mechanisms in cardiac myocytes.


2015 ◽  
Vol 309 (5) ◽  
pp. H958-H968 ◽  
Author(s):  
Ling Chen ◽  
Hong Song ◽  
Youhua Wang ◽  
Jane C. Lee ◽  
Michael I. Kotlikoff ◽  
...  

Arterial myocytes express α1-catalytic subunit isoform Na+ pumps (75–80% of total), which are ouabain resistant in rodents, and high ouabain affinity α2-Na+ pumps. Mice with globally reduced α2-pumps (but not α1-pumps), mice with mutant ouabain-resistant α2-pumps, and mice with a smooth muscle (SM)-specific α2-transgene (α2SM-Tg) that induces overexpression all have altered blood pressure (BP) phenotypes. We generated α2SM-DN mice with SM-specific α2 (not α1) reduction (>50%) using nonfunctional dominant negative (DN) α2. We compared α2SM-DN and α2SM-Tg mice to controls to determine how arterial SM α2-pumps affect vasoconstriction and BP. α2SM-DN mice had elevated basal mean BP (mean BP by telemetry: 117 ± 4 vs. 106 ± 1 mmHg, n = 7/7, P < 0.01) and enhanced BP responses to chronic ANG II infusion (240 ng·kg−1·min−1) and high (6%) NaCl. Several arterial Ca2+ transporters, including Na+/Ca2+ exchanger 1 (NCX1) and sarcoplasmic reticulum and plasma membrane Ca2+ pumps [sarco(endo)plasmic reticulum Ca2+-ATPase 2 (SERCA2) and plasma membrane Ca2+-ATPase 1 (PMCA1)], were also reduced (>50%). α2SM-DN mouse isolated small arteries had reduced myogenic reactivity, perhaps because of reduced Ca2+ transporter expression. In contrast, α2SM-Tg mouse aortas overexpressed α2 (>2-fold), NCX1, SERCA2, and PMCA1 (43). α2SM-Tg mice had reduced basal mean BP (104 ± 1 vs. 109 ± 2 mmHg, n = 15/9, P < 0.02) and attenuated BP responses to chronic ANG II (300–400 ng·kg−1·min−1) with or without 2% NaCl but normal myogenic reactivity. NCX1 expression was inversely related to basal BP in SM-α2 engineered mice but was directly related in SM-NCX1 engineered mice. NCX1, which usually mediates arterial Ca2+ entry, and α2-Na+ pumps colocalize at plasma membrane-sarcoplasmic reticulum junctions and functionally couple via the local Na+ gradient to help regulate cell Ca2+. Altered Ca2+ transporter expression in SM-α2 engineered mice apparently compensates to minimize Ca2+ overload (α2SM-DN) or depletion (α2SM-Tg) and attenuate BP changes. In contrast, Ca2+ transporter upregulation, observed in many rodent hypertension models, should enhance Ca2+ entry and signaling and contribute significantly to BP elevation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yongjun Zhu ◽  
Hongwang Cui ◽  
Jie Lv ◽  
Haiqin Liang ◽  
Yanping Zheng ◽  
...  

AbstractAbnormal renin-angiotensin system (RAS) activation plays a critical role in the initiation and progression of chronic kidney disease (CKD) by directly mediating renal tubular cell apoptosis. Our previous study showed that necroptosis may play a more important role than apoptosis in mediating renal tubular cell loss in chronic renal injury rats, but the mechanism involved remains unknown. Here, we investigate whether blocking the angiotensin II type 1 receptor (AT1R) and/or angiotensin II type 2 receptor (AT2R) beneficially alleviates renal tubular cell necroptosis and chronic kidney injury. In an angiotensin II (Ang II)-induced renal injury mouse model, we found that blocking AT1R and AT2R effectively mitigates Ang II-induced increases in necroptotic tubular epithelial cell percentages, necroptosis-related RIP3 and MLKL protein expression, serum creatinine and blood urea nitrogen levels, and tubular damage scores. Furthermore, inhibition of AT1R and AT2R diminishes Ang II-induced necroptosis in HK-2 cells and the AT2 agonist CGP42112A increases the percentage of necroptotic HK-2 cells. In addition, the current study also demonstrates that Losartan and PD123319 effectively mitigated the Ang II-induced increases in Fas and FasL signaling molecule expression. Importantly, disruption of FasL significantly suppressed Ang II-induced increases in necroptotic HK-2 cell percentages, and necroptosis-related proteins. These results suggest that Fas and FasL, as subsequent signaling molecules of AT1R and AT2R, might involve in Ang II-induced necroptosis. Taken together, our results suggest that Ang II-induced necroptosis of renal tubular cell might be involved both AT1R and AT2R and the subsequent expression of Fas, FasL signaling. Thus, AT1R and AT2R might function as critical mediators.


2019 ◽  
Vol 317 (6) ◽  
pp. H1301-H1311 ◽  
Author(s):  
Qiu-Yue Lin ◽  
Ping-Ping Lang ◽  
Yun-Long Zhang ◽  
Xiao-Lei Yang ◽  
Yun-Long Xia ◽  
...  

Intercellular adhesion molecule-1 (ICAM-1) is a member of an immunoglobulin-like superfamily of adhesion molecules that mediate leukocyte adhesion to vascular endothelium and are involved in several cardiovascular diseases, including ischemia-reperfusion injury, myocardial infarction, and atherosclerosis. However, the role of ICAM-1 in angiotensin II (ANG II)-induced cardiac remodeling in mice remains unclear. Wild-type mice were administered an IgG control or ICAM-1 neutralizing antibody (1 and 2 mg/mouse, respectively) and ANG II (1,000 ng·kg−1·min−1) for up to 14 days. Cardiac contractile function and structure were detected by echocardiography. Hypertrophy, fibrosis, and inflammation were assessed by histological examination. The infiltration of lymphocyte function-associated antigen-1 (LFA-1+) monocytes/macrophages was assessed by immunostaining. The mRNA expression of genes was evaluated by quantitative RT-PCR analysis. Protein levels were tested by immunoblotting. We found that ICAM-1 expression in ANG II-infused hearts and ICAM-1 levels in serum from human patients with heart failure were significantly increased. Moreover, ANG II infusion markedly enhanced ANG II-induced hypertension, caused cardiac contractile dysfunction, and promoted cardiac hypertrophy, fibrosis, and LFA-1+ macrophage infiltration. Conversely, blockage of ICAM-1 with a neutralizing antibody dose-dependently attenuated these effects. Moreover, our in vitro data further demonstrated that blocking ICAM-1 inhibited ANG II-induced LFA-1+ macrophage adhesion to endothelial cells and migration. In conclusion, these results provide novel evidence that blocking ICAM-1 exerts a protective effect in ANG II-induced cardiac remodeling at least in part through the modulation of adhesion and infiltration of LFA-1+ macrophages in the heart. Inhibition of ICAM-1 may represent a new therapeutic approach for hypertrophic heart diseases. NEW & NOTEWORTHY Leukocyte adhesion to vascular endothelium is a critical step in cardiovascular diseases. ICAM-1 is a member of immunoglobulin-like superfamily of adhesion molecules that binds LFA-1 to mediate leukocytes adhesion and migration. However, the significance of ICAM-1 in ANG II-induced cardiac remodeling remains unclear. This study reveals that blocking of ICAM-1 prevents ANG II-induced cardiac remodeling via modulating adhesion and migration of LFA-1+ monocytes, may serve as a novel therapeutic target for hypertensive cardiac diseases.


2010 ◽  
Vol 298 (1) ◽  
pp. F177-F186 ◽  
Author(s):  
Anne D. M. Riquier-Brison ◽  
Patrick K. K. Leong ◽  
Kaarina Pihakaski-Maunsbach ◽  
Alicia A. McDonough

Angiotensin II (ANG II) stimulates proximal tubule (PT) sodium and water reabsorption. We showed that treating rats acutely with the angiotensin-converting enzyme inhibitor captopril decreases PT salt and water reabsorption and provokes rapid redistribution of the Na+/H+ exchanger isoform 3 (NHE3), Na+/Pi cotransporter 2 (NaPi2), and associated proteins out of the microvilli. The aim of the present study was to determine whether acute ANG II infusion increases the abundance of PT NHE3, NaPi2, and associated proteins in the microvilli available for reabsorbing NaCl. Male Sprague-Dawley rats were infused with a dose of captopril (12 μg/min for 20 min) that increased PT flow rate ∼20% with no change in blood pressure (BP) or glomerular filtration rate (GFR). When ANG II (20 ng·kg−1·min−1 for 20 min) was added to the captopril infusate, PT volume flow rate returned to baseline without changing BP or GFR. After captopril, NHE3 was localized to the base of the microvilli and NaPi2 to subapical cytoplasmic vesicles; after 20 min ANG II, both NHE3 and NaPi2 redistributed into the microvilli, assayed by confocal microscopy and density gradient fractionation. Additional PT proteins that redistributed into low-density microvilli-enriched membranes in response to ANG II included myosin VI, DPPIV, NHERF-1, ezrin, megalin, vacuolar H+-ATPase, aminopeptidase N, and clathrin. In summary, in response to 20 min ANG II in the absence of a change in BP or GFR, multiple proteins traffic into the PT brush-border microvilli where they likely contribute to the rapid increase in PT salt and water reabsorption.


1995 ◽  
Vol 269 (2) ◽  
pp. C435-C442 ◽  
Author(s):  
Y. Wen ◽  
M. C. Cabot ◽  
E. Clauser ◽  
S. L. Bursten ◽  
J. L. Nadler

A stable Chinese hamster ovary fibroblast line expressing the rat vascular type 1a angiotensin II (ANG II) receptor was used to study the lipid-derived signal transduction pathways elicited by type 1a ANG II receptor activation. ANG II caused a biphasic and dose-dependent increase in diacylglycerol (DAG) accumulation with an initial peak at 15 s (181 +/- 11% of control, P < 0.02) and a second sustained peak at 5-10 min (214 +/- 10% of control, P < 0.02). The late DAG peak was derived from phosphatidylcholine (PC), and the formation was blocked by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. ANG II also increased phosphatidic acid (PA) production nearly fourfold by 7.5 min. In the presence of ethanol, ANG II markedly increased phosphatidylethanol (PEt) formation, indicating activation of phospholipase D (PLD). ANG II was shown to increase the mass of three separate PA species, one of which apparently originated from DAG kinase action on PC-phospholipase C (PLC)-produced DAG, providing evidence for PC-PLC activity. ANG II also formed a third PA species, which originated neither from PLD nor from DAG kinase. These results demonstrate that multiple lipid signals propagated via collateral stimulation of PLC and PLD are generated by specific activation of the vascular type 1a ANG II receptor.


1995 ◽  
Vol 269 (1) ◽  
pp. F110-F115 ◽  
Author(s):  
A. Tufro-McReddie ◽  
L. M. Romano ◽  
J. M. Harris ◽  
L. Ferder ◽  
R. A. Gomez

To test the hypothesis that angiotensin II (ANG II) is necessary for normal embryonic and postnatal kidney development, the effect of angiotensin receptor blockade or angiotensin converting enzyme inhibition on nephrovascular development was studied in newborn Sprague-Dawley rats and in Rana catesbeiana tadpoles undergoing prometamorphosis. Blockade of ANG II type 1 receptor (AT1) in newborn rats induced an arrest in nephrovascular maturation and renal growth, resulting in altered kidney architecture, characterized by fewer, thicker, and shorter afferent arterioles, reduced glomerular size and number, and tubular dilatation. Inhibition of ANG II generation in tadpoles induced even more marked developmental renal abnormalities. Blockade of ANG II type 2 receptor (AT2) in newborn rats did not alter renal growth or morphology. Results indicate that ANG II regulates nephrovascular development, a role that is conserved across species.


Sign in / Sign up

Export Citation Format

Share Document