scholarly journals Histone deacetylase 6 inhibition mitigates renal fibrosis by suppressing TGF-β and EGFR signaling pathways in obstructive nephropathy

2020 ◽  
Vol 319 (6) ◽  
pp. F1003-F1014
Author(s):  
Xingying Chen ◽  
Chao Yu ◽  
Xiying Hou ◽  
Jialu Li ◽  
Tingting Li ◽  
...  

We have recently shown that histone deacetylase 6 (HDAC6) is critically involved in the pathogenesis of acute kidney injury. Its role in renal fibrosis, however, remains unclear. In this study, we examined the effect of ricolinostat (ACY-1215), a selective inhibitor of HDAC6, on the development of renal fibrosis in a murine model induced by unilateral ureteral obstruction (UUO). HDAC6 was highly expressed in the kidney following UUO injury, which was coincident with deposition of collagen fibrils and expression of α-smooth muscle actin, fibronectin, and collagen type III. Administration of ACY-1215 reduced these fibrotic changes and inhibited UUO-induced expression of transforming growth factor-β1 and phosphorylation of Smad3 while increasing expression of Smad7. ACY-1215 treatment also suppressed phosphorylation of epidermal growth factor receptor (EGFR) and several signaling molecules associated with renal fibrogenesis, including AKT, STAT3, and NF-κB in the injured kidney. Furthermore, ACY-1215 was effective in inhibiting dedifferentiation of renal fibroblasts to myofibroblasts and the fibrotic change of renal tubular epithelial cells in culture. Collectively, these results indicate that HDAC6 inhibition can attenuate development of renal fibrosis by suppression of transforming growth factor-β1 and EGFR signaling and suggest that HDAC6 would be a potential therapeutic target for the treatment of renal fibrosis.

2013 ◽  
Vol 305 (4) ◽  
pp. F477-F484 ◽  
Author(s):  
Sarah C. Huen ◽  
Gilbert W. Moeckel ◽  
Lloyd G. Cantley

Macrophage infiltration is a prominent feature of the innate immune response to kidney injury. The persistence of macrophages is associated with tubulointerstitial fibrosis and progression of chronic kidney disease. Macrophages are known to be major producers of transforming growth factor-β1 (TGF-β1), especially in the setting of phagocytosis of apoptotic cells. TGF-β1 has long been implicated as a central mediator of tissue scarring and fibrosis in many organ disease models, including kidney disease. In this study, we show that homozygous deletion of Tgfb1 in myeloid lineage cells in mice heterozygous for Tgfb1 significantly reduces kidney Tgfb1 mRNA expression and Smad activation at late time points after renal ischemia-reperfusion injury. However, this reduction in kidney Tgfb1 expression and signaling results in only a modest reduction of isolated fibrosis markers and does not lead to decreased interstitial fibrosis in either ischemic or obstructive injury models. Thus, targeting macrophage-derived TGF-β1 does not appear to be an effective therapy for attenuating progressive renal fibrosis after kidney injury.


2014 ◽  
Vol 34 (5) ◽  
Author(s):  
Guo-tao Chen ◽  
Ling Zhang ◽  
Xiao-hui Liao ◽  
Ru-yu Yan ◽  
Ying Li ◽  
...  

Renal fibrosis is a hallmark in CKD (chronic kidney disease) and is strongly correlated to the deterioration of renal function that is characterized by tubulointerstitial fibrosis, tubular atrophy, glomerulosclerosis and disruption of the normal architecture of the kidney. ALR (augmenter of liver regeneration) is a growth factor with biological functions similar to those of HGF (hepatocyte growth factor). In this study, our results indicate that endogenous ALR is involved in the pathological progression of renal fibrosis in UUO (unilateral ureteral obstruction) rat model. Moreover, we find that administration of rhALR (recombinant human ALR) significantly alleviates renal interstitial fibrosis and reduces renal-fibrosis-related proteins in UUO rats. Further investigation reveals that rhALR suppresses the up-regulated expression of TGF-β1 (transforming growth factor β1) induced by UUO operation in the obstructed kidney, and inhibits Smad2 and Smad3 phosphorylation activated by the UUO-induced injury in the animal model. Therefore we suggest that ALR is involved in the progression of renal fibrosis and administration of rhALR protects the kidney against renal fibrosis by inhibition of TGF-β/Smad activity.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Bo Yang ◽  
Sixiu Chen ◽  
Ming Wu ◽  
Lin Zhang ◽  
Mengna Ruan ◽  
...  

Abstract PHF14 is a newly identified regulator of mesenchyme growth in embryonic tissues. Previous studies have shown that phf14-null mutants die just after birth due to interstitial tissue hyperplasia in major organs, including the kidneys. The aim of this study was to investigate PHF14 function in renal fibrosis. By studying the chronic kidney injury mouse model, we found that PHF14 was upregulated in fibrotic kidneys after renal insults induced by folic acid administration. Compared with wild-type mice, PHF14-null mice showed more severe renal fibrosis after pro-fibrotic stimuli. Moreover, PHF14 in rat renal fibroblasts was upregulated by transforming growth factor-β (TGF-β) stimulation; while this upregulation was inhibited when smad3 phosphorylation was blocked. A chromatin immunoprecipitation (ChIP) assay further indicated that phospho-smad3 (p-smad3) acted as a transcription factor to enhance PHF14 expression. A lack of PHF14 expression enhanced collagen I and α-smooth muscle actin (α-SMA) synthesis induced by TGF-β in vitro. PHF14 was involved in inhibition of platelet-derived growth factor (PDGF) signaling overactivation by selectively repressing PDGF receptor-α (PDGFR-α) transcription. In summary, PHF14 expression was upregulated in fibrotic models in vivo and in vitro, and the TGF-β/smad3/PHF14 pathway acted as a self-limiting mechanism in the TGF-β-dominated renal pro-fibrotic process by suppressing PDGFR-α expression.


2003 ◽  
Vol 284 (2) ◽  
pp. F349-F357 ◽  
Author(s):  
Junwei Yang ◽  
Youhua Liu

Hepatocyte growth factor (HGF) is a renotropic protein that elicits antifibrogenic activity by preventing the activation of matrix-producing myofibroblast cells in animal models of chronic renal diseases. However, whether a delayed administration of HGF can still attenuate renal fibrosis remains uncertain. In this study, we examined the therapeutic potential of exogenous HGF on an established renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO). Three days after UUO, the obstructed kidneys displayed interstitial fibrotic lesions with characteristic features of an established renal fibrosis, as manifested by myofibroblast activation, fibronectin overexpression, interstitial matrix deposition, and transforming growth factor-β1 upregulation. Beginning at this time point, administration of recombinant HGF into mice by intravenous injections for 11 days markedly suppressed the progression of renal interstitial fibrosis. HGF significantly suppressed renal α-smooth muscle actin expression, total kidney collagen contents, interstitial matrix components, such as fibronectin, and renal expression of transforming growth factor-β1 and its type I receptor. Compared with the starting point (3 days after UUO), HGF treatment largely blunted the progression of myofibroblast accumulation and collagen deposition but did not reverse it. Delayed administration of HGF also suppressed the myofibroblastic transdifferentiation from tubular epithelial cells in vitro, as demonstrated by a decline in α-smooth muscle actin and fibronectin expression. These results suggest that exogenous HGF exhibits potent therapeutic effects on retarding the progression of an established renal fibrosis.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1628
Author(s):  
Kaj E. C. Blokland ◽  
Habibie Habibie ◽  
Theo Borghuis ◽  
Greta J. Teitsma ◽  
Michael Schuliga ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor survival. Age is a major risk factor, and both alveolar epithelial cells and lung fibroblasts in this disease exhibit features of cellular senescence, a hallmark of ageing. Accumulation of fibrotic extracellular matrix (ECM) is a core feature of IPF and is likely to affect cell function. We hypothesize that aberrant ECM deposition augments fibroblast senescence, creating a perpetuating cycle favouring disease progression. In this study, primary lung fibroblasts were cultured on control and IPF-derived ECM from fibroblasts pretreated with or without profibrotic and prosenescent stimuli, and markers of senescence, fibrosis-associated gene expression and secretion of cytokines were measured. Untreated ECM derived from control or IPF fibroblasts had no effect on the main marker of senescence p16Ink4a and p21Waf1/Cip1. However, the expression of alpha smooth muscle actin (ACTA2) and proteoglycan decorin (DCN) increased in response to IPF-derived ECM. Production of the proinflammatory cytokines C-X-C Motif Chemokine Ligand 8 (CXCL8) by lung fibroblasts was upregulated in response to senescent and profibrotic-derived ECM. Finally, the profibrotic cytokines transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) were upregulated in response to both senescent- and profibrotic-derived ECM. In summary, ECM deposited by IPF fibroblasts does not induce cellular senescence, while there is upregulation of proinflammatory and profibrotic cytokines and differentiation into a myofibroblast phenotype in response to senescent- and profibrotic-derived ECM, which may contribute to progression of fibrosis in IPF.


2021 ◽  
Vol 19 (4) ◽  
pp. 501-507
Author(s):  
Yunhe Gu ◽  
Peiyao Guo ◽  
Guangbiao Xu

Transforming growth factor-β1 promotes excessive extracellular matrix deposition and epithelial-mesenchymal transition of tubular epithelial cells, thus stimulating the progression of renal fibrosis. Carvacrol has been shown to alleviate cardiac and liver fibrosis and attenuate renal injury. However, the role of carvacrol on renal fibrosis has not been examined. First, measurements using Cell Counting Kit-8 showed that carvacrol reduced cell viability of tubular epithelial cell line HK-2 in a dose-dependent fashion. Second, transforming growth factor-β1 induced excessive extracellular matrix deposition in HK-2 cells with enhanced collagen I, collagen IV, and fibronectin expression. However, carvacrol decreased the expression of collagen I, collagen IV in a dose-dependent manner and fibronectin to attenuate the extracellular matrix deposition in HK-2. Third, carvacrol attenuated TGF-β1-induced decrease of E-cadherin and increase of snail, vimentin, and alpha-smooth muscle actin in HK-2 cells. Transforming growth factor-β1-induced increase in PI3K and AKT phosphorylation in HK-2 were also reversed by carvacrol. Collectively, carvacrol ameliorates renal fibrosis through inhibition of transforming growth factor-β1-induced extracellular matrix deposition and epithelial-mesenchymal transition of HK-2 cells, providing potential therapy for the treatment of renal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document