Renal expression of novel Na+/H+exchanger isoform NHE8

2003 ◽  
Vol 284 (3) ◽  
pp. F467-F473 ◽  
Author(s):  
Sunita Goyal ◽  
Gregory Vanden Heuvel ◽  
Peter S. Aronson

Although Na+/H+exchanger isoform 3 (NHE3) mediates most Na+/H+exchange in the proximal tubule, studies of NHE3/NHE2 null mice suggest residual Na+-dependent proton secretion (Choi JY, Shah M, Lee MG, Schultheis PJ, Shull GE, Muallem S, and Baum M. J Clin Invest 105: 1141–1146, 2000). To characterize additional NHE isoforms that might be expressed in the kidney, we identified the partial sequence of a novel NHE. PCR was used to define the 5′- and 3′-ends, and a cDNA encoding the complete open reading frame was amplified from mouse kidney. The predicted protein of 576 amino acids, which we have named NHE8, has 30–35% amino acid identity to known mammalian isoforms (NHE1–7) but has >50% identity to Drosophila melanogaster “NHE1,” suggesting it is the mammalian ortholog of this ancient invertebrate isoform. Northern blot of mouse tissues revealed ubiquitous expression. Western blot using anti-NHE8 antibodies demonstrated protein expression in apical membranes purified from rat renal cortex by divalent cation precipitation. In situ hybridization revealed that NHE8 message was present in both cortex and medulla. In the cortex, NHE8 was present in the majority of cortical tubules, consistent with proximal tubule (S1 and S2) localization. In the medulla, NHE8 message was most highly expressed in the proximal tubules (S3) of the outer stripe of the outer medulla. Thus NHE8 is expressed in the proximal tubule, where it may contribute to apical membrane ion transport.

2001 ◽  
Vol 281 (6) ◽  
pp. F1117-F1122 ◽  
Author(s):  
Tong Wang ◽  
Max Hropot ◽  
Peter S. Aronson ◽  
Gerhard Giebisch

This study assessed the functional role of Na+/H+ exchanger (NHE) isoforms NHE3 and NHE2 in the proximal tubule, loop of Henle, and distal convoluted tubule of the rat kidney by comparing sensitivity of transport to inhibition by Hoe-694 (an agent known to inhibit NHE2 but not NHE3) and S-3226 (an agent with much higher affinity for NHE3 than NHE2). Rates of transport of fluid ( J v) and HCO[Formula: see text]( J HCO3) were studied by in situ microperfusion. In the proximal tubule, addition of ethylisopropylamiloride or S-3226 significantly reduced J v and J HCO3, but addition of Hoe-694 caused no significant inhibition. In the loop of Henle, J HCO3 was also inhibited by S-3226 and not by Hoe-694, although much higher concentrations of S-3226 were required than what was necessary to inhibit transport in the proximal tubule. In contrast, in the distal convoluted tubule, J HCO3was inhibited by Hoe-694 but not by S-3226. These results are consistent with the conclusion that NHE2 rather than NHE3 is the predominant isoform responsible for apical membrane Na+/H+ exchange in the distal convoluted tubule, whereas NHE3 is the predominant apical isoform in the proximal tubule and possibly also in the loop of Henle.


1999 ◽  
Vol 277 (2) ◽  
pp. F298-F302 ◽  
Author(s):  
Tong Wang ◽  
Chao-Ling Yang ◽  
Thecla Abbiati ◽  
Patrick J. Schultheis ◽  
Gary E. Shull ◽  
...  

NHE3 is the predominant isoform responsible for apical membrane Na+/H+exchange in the proximal tubule. Deletion of NHE3 by gene targeting results in an NHE3−/−mouse with greatly reduced proximal tubule[Formula: see text] absorption compared with NHE3+/+ animals (P. J. Schultheis, L. L. Clarke, P. Meneton, M. L. Miller, M. Soleimani, L. R. Gawenis, T. M. Riddle, J. J. Duffy, T. Doetschman, T. Wang, G. Giebisch, P. S. Aronson, J. N. Lorenz, and G. E. Shull. Nature Genet. 19: 282–285, 1998). The purpose of the present study was to evaluate the role of other acidification mechanisms in mediating the remaining component of proximal tubule [Formula: see text] reabsorption in NHE3−/− mice. Proximal tubule transport was studied by in situ microperfusion. Net rates of[Formula: see text] ( J HCO3) and fluid absorption ( J v) were reduced by 54 and 63%, respectively, in NHE3 null mice compared with controls. Addition of 100 μM ethylisopropylamiloride (EIPA) to the luminal perfusate caused significant inhibition of J HCO3 and J v in NHE3+/+ mice but failed to inhibit J HCO3 or J v in NHE3−/− mice, indicating lack of activity of NHE2 or other EIPA-sensitive NHE isoforms in the null mice. Addition of 1 μM bafilomycin caused a similar absolute decrement in J HCO3 in wild-type and NHE3 null mice, indicating equivalent rates of[Formula: see text] absorption mediated by H+-ATPase. Addition of 10 μM Sch-28080 did not reduce J HCO3 in either wild-type or NHE3 null mice, indicating lack of detectable H+-K+-ATPase activity in the proximal tubule. We conclude that, in the absence of NHE3, neither NHE2 nor any other EIPA-sensitive NHE isoform contributes to mediating [Formula: see text] reabsorption in the proximal tubule. A significant component of[Formula: see text] reabsorption in the proximal tubule is mediated by bafilomycin-sensitive H+-ATPase, but its activity is not significantly upregulated in NHE3 null mice.


1995 ◽  
Vol 269 (3) ◽  
pp. F405-F418 ◽  
Author(s):  
P. Igarashi ◽  
G. B. Vanden Heuvel ◽  
J. A. Payne ◽  
B. Forbush

A full-length cDNA encoding the murine renal Na-K-Cl cotransporter (NKCC2) was cloned using library screening and anchored polymerase chain reaction. The deduced protein sequence contained 1,095 amino acids and was 93.5% identical to rabbit NKCC2 and 97.6% identical to rat BSC1. Two potential sites of phosphorylation by adenosine 3',5'-cyclic monophosphate-dependent protein kinase and seven potential sites of phosphorylation by protein kinase C, which were previously identified in the rabbit and rat sequences, were phylogenetically conserved in the mouse. The expression of NKCC2 in the mouse was examined with Northern blot analysis and in situ hybridization. Expression of NKCC2 was kidney specific in both adult and embryonic mice. In the developing metanephros, NKCC2 was induced at 14.5 days post coitus and was expressed in distal limbs of immature loops of Henle but was absent from the ureteric bud, S-shaped bodies, and earlier nephrogenic structures. Similar to the rabbit, isoforms of NKCC2 that differed in the sequence of a 96-bp segment were identified in the mouse. In situ hybridization revealed that the isoforms exhibited different patterns of expression in the mature thick ascending limb of the loop of Henle as follows: isoform F was most highly expressed in the inner stripe of outer medulla, isoform A was most highly expressed in the outer stripe of the outer medulla, and isoform B was most highly expressed in the cortical thick ascending limb. To verify that the isoforms were generated by alternative splicing of mutually exclusive cassette exons, genomic clones encoding murine NKCC2 were characterized. Cassette exons were identified that corresponded to each of the three isoforms and were flanked by consensus splice donor and acceptor sequences.


1995 ◽  
Vol 268 (4) ◽  
pp. F643-F650 ◽  
Author(s):  
R. K. Zalups ◽  
J. Fraser ◽  
J. Koropatnick

Metallothioneins (MTs) have been implicated in the intracellular regulation of essential metals in eukaryotic cells, and increased expression of MT genes has been demonstrated during the growth and proliferation of cells. To explore the expression of MT in somatic cells undergoing growth (hypertrophy) in the kidney in situ, we measured the rates of transcription of the genes for MT-1 and MT-2, measured the levels of mRNA for MT-1 and MT-2, and measured the concentration of MT-1 and MT-2 protein in samples of renal (and hepatic) tissue from uninephrectomized (NPX) and sham-operated (SO) rats 15 days after surgery. The rates of transcription of the genes for MT-1 and MT-2 were found to be enhanced significantly in the remnant renal mass, particularly in the cortex and outer stripe of the outer medulla, and in the liver, after uninephrectomy and after 15 days allowing for compensatory renal growth. Increased accumulation of mRNA for MT-1 and MT-2 also occurred in the cortex and outer stripe of the outer medulla of the remnant kidney and in the liver in the NPX rats. Increased concentration of MT-1 and MT-2 protein (measured by radioimmunoassay), at the level of the whole kidney, renal cortex, and liver, was another feature detected in rats after uninephrectomy and 15 days of compensatory renal growth. These findings indicate that compensatory renal growth in response to uninephrectomy is associated with the induction of the expression of MT genes in the renal cortex and outer stripe of the outer medulla, as well as in the liver.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 269 (5) ◽  
pp. F673-F680 ◽  
Author(s):  
D. Li ◽  
A. Aperia ◽  
G. Celsi ◽  
E. F. da Cruz e Silva ◽  
P. Greengard ◽  
...  

Previous studies of hormonal regulation of renal Na(+)-K(+)-ATPase have indicated that the activity of the sodium pump is regulated by phosphorylation-dephosphorylation reactions. Here we report that okadaic acid (OA) and calyculin A (CL-A), inhibitors of protein phosphatase (PP)-1 and PP-2A, inhibited Na(+)-K(+)-ATPase activity in cells from the rat thick ascending limb (TAL) of loop of Henle in a dose-dependent manner. CL-A was 10-fold more potent than OA. On the basis of the inhibitory constant values of CL-A and OA for PP-1 and PP-2A, it is concluded that the tubular effect is mainly due to inhibition of PP-1. In situ hybridization studies with oligonucleotide probes revealed very strong PP-1 alpha and PP-1 gamma 1 mRNA labeling in the outer stripe of the outer medulla, strong labeling in the inner stripe of the outer medulla, and weak labeling in the inner medulla. Very weak labeling was demonstrated in the outer cortex. PP-1 beta mRNA labeling was very strong in the inner stripe of the outer medulla, whereas the outer stripe had weaker labeling, and the inner medulla had weak labeling. PP-1 alpha, PP-1 beta, and PP-1 gamma 1 mRNA were also demonstrated in the transitional epithelium of the ureter. The abundance of the PP-1 alpha and PP-1 gamma isoforms as measured by immunoblotting was very high in tissue from the outer medulla, which also has a high abundance of the endogenous dopamine-regulated PP-1 inhibitor, DARPP-32.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 8 (1) ◽  
pp. 1-14
Author(s):  
A B Maunsbach ◽  
D Marples ◽  
E Chin ◽  
G Ning ◽  
C Bondy ◽  
...  

The pattern of aquaporin-1 water channel protein (AQP1) expression in the human kidney was analyzed by immunocytochemistry using semi-thin and optimized high-resolution immunoelectron microscopy based on freeze-substituted and Lowicryl HM20 embedded tissue. In addition, in situ hybridization was used to determine AQP1 mRNA distribution. Immunoblots revealed a 28-kd band and a 35- to 45-kd band corresponding to unglycosylated and glycosylated AQP1. Glomerular capillary endothelium exhibited extensive AQP1 labeling, whereas glomerular podocytes and Bowman's capsule epithelium were unlabeled. AQP1 was localized in the proximal tubule, including the neck region directly connected to the glomerulus. However, there was a marked difference in the level of expression between cross-sections of the convoluted part and the proximal straight tubules, the latter displaying the most intense labeling. AQP1 labeling continued uninterrupted from the proximal straight tubule into descending thin limbs in outer medulla. Abrupt transitions from heavily labeled to unlabeled segments of thin limbs were observed, primarily in the inner medulla. This may represent the transition from the water-permeable thin descending limb to the water-impermeable thin ascending limb. In addition, heavy labeling of fenestrated endothelium was also observed in peritubular capillaries in cortex, outer medulla, and inner medulla. Immunolabeling controls were negative. In situ hybridization documented a marked difference in AQP1 mRNA levels within the proximal tubule, with the greatest AQP1 mRNA expression in straight proximal tubules. Glomeruli also showed marked signals, and descending thin limbs exhibited extensive expression in exact concordance with the immunocytochemical results. It was concluded that: (1) AQP1 is present in all proximal tubule segments, including segment 1 and the neck region, but there is a pronounced difference in expression levels with respect to both protein and mRNA levels; (2) AQP1 labeling is observed in the endothelium of fenestrated peritubular capillaries, as well as fenestrated glomerular capillaries; (3) AQP1 labeling continues directly from proximal tubules to descending thin limbs; and (4) abrupt transitions from labeled to unlabeled thin limb epithelium are noted.


1998 ◽  
Vol 274 (3) ◽  
pp. F628-F633 ◽  
Author(s):  
N. Abuladze ◽  
I. Lee ◽  
D. Newman ◽  
J. Hwang ◽  
A. Pushkin ◽  
...  

It is generally accepted that Na(HCO3) n cotransport is the most important mechanism mediating basolateral bicarbonate efflux in the early proximal tubule. The presence of basolateral Na(HCO3) n cotransport in the late proximal tubule (S3 segment) and in the juxtamedullary S1 and S2 segments has been controversial. The renal sodium-bicarbonate cotransporter (NBC) has been recently cloned from rat (M. F. Romero, M. A. Hediger, E. L. Boulpaep, and W. F. Boron. J. Am. Soc. Nephrol. 7: 1259, 1996), salamander (M. F. Romero, M. A. Hediger, E. L. Boulpaep, and W. F. Boron. Nature 387: 409–413, 1997), and human (C. E. Burnham, H. Amlal, Z. Wang, G. E. Shull, and M. Soleimani. J. Biol. Chem. 272: 19111–19114, 1997). The localization of NBC in the kidney is unknown. The present study was designed to localize NBC mRNA expression in the rabbit proximal tubule. In situ hybridization studies were combined with functional studies of basolateral Na(HCO3) n cotransport in superficial and juxtamedullary S1, S2, and S3 segments of the rabbit proximal tubule. The results demonstrate that NBC mRNA is localized predominantly to the cortex, with less expression in the outer medulla. NBC expression was not detected in the inner medulla. The highest level of NBC mRNA is in the S1 proximal tubule. NBC is expressed at a low levels in the S3 segment, with intermediate expression in the S2 segment. In bicarbonate-buffered solutions, the rate of base efflux mediated by Na(HCO3) n cotransport followed a similar pattern in superficial and juxtamedullary proximal tubule segments, i.e., S1 > S2 > S3. The juxtamedullary S1 segment had the greatest rate of basolateral Na(HCO3) n cotransport and the highest level of NBC expression in the proximal tubule.


2002 ◽  
Vol 283 (6) ◽  
pp. F1313-F1325 ◽  
Author(s):  
Weidong Wang ◽  
Chunling Li ◽  
Tae-Hwan Kwon ◽  
Mark A. Knepper ◽  
Jørgen Frøkiær ◽  
...  

The purpose of this study was to evaluate whether hypercalcemia is associated with downregulation of renal aquaporins (AQPs), including AQP1, AQP2, phosphorylated AQP2 (p-AQP2), AQP3, and AQP4, and if this is the case, to test whether cAMP-phosphodiesterase (PDE) inhibitor treatment can prevent AQP downregulation and prevent the development of polyuria. Vitamin D-induced hypercalcemia in rats was associated with increased urine output and reduced urine osmolality, consistent with previous findings (Levi M, Peterson L, and Berl T. Kidney Int 23: 489–497, 1983). Semiquantitative immunoblotting revealed a significant reduction in the abundance of inner medullary AQP2 (52 ± 6% of control levels), consistent with previous studies, and of AQP2, which is phosphorylated at the PKA phosphorylation consensus site serine 256 (p-AQP2; 36 ± 8%). Moreover, AQP3 abundance was also significantly decreased (45 ± 7 and 61 ± 6% of control levels in inner medulla and whole kidney, respectively). Consistent with this, immunohistochemistry demonstrated reduced AQP3 immunolabeling along the entire collecting duct. AQP4 expression was not reduced. Surprisingly, total kidney AQP1 abundance was also reduced (60 ± 6%). AQP1 expression was reduced in the cortex and outer stripe of the outer medulla (48 ± 7%; i.e., in proximal tubules). In contrast, AQP1 levels were not changed in the inner stripe of the outer medulla or in the inner medulla (i.e., descending thin limbs and vasa recta). Treatment with the cAMP-PDE inhibitors rolipram and milrinone in combination (inhibiting PDE IV and PDE III isoenzymes) at day 2 and onward completely prevented the hypercalcemia-induced downregulation of AQP2 and AQP3 (but not AQP1) and completely prevented the development of polyuria. In conclusion, AQP3, AQP2, and p-AQP2 are downregulated and are likely to play critical roles in the development of polyuria associated with vitamin D-induced hypercalcemia. Moreover, PDE inhibitor treatment significantly prevented the reduced expression of collecting duct AQPs and prevented the development of polyuria.


Author(s):  
Hyun-Wook Lee ◽  
Jill W. Verlander ◽  
Gary E Shull ◽  
Autumn N. Harris ◽  
I. David Weiner

The molecular mechanisms regulating ammonia metabolism are fundamental to acid-base homeostasis. Deleting the A splice variant of the Na⁺-bicarbonate cotransporter, electrogenic, isoform 1 (NBCe1-A) partially blocks the effect of acidosis to increase urinary ammonia excretion, and this appears to involve the dysregulated expression of ammoniagenic enzymes in the proximal tubule (PT) in the cortex, but not in the outer medulla (OM). A second NBCe1 splice variant, NBCe1-B, is present throughout the PT, including the OM, where NBCe1-A is not present. The current studies determined the effects of combined renal deletion of NBCe1-A and NBCe1-B on systemic and proximal tubule ammonia metabolism. We generated NBCe1-A/B deletion using Cre-loxP techniques and used Cre-negative mice as controls. Since renal NBCe1-A and NBCe1-B expression is limited to the proximal tubule, Cre-positive mice had proximal tubule NBCe1-A/B deletion (PT-NBCe1-A/B KO). While on basal diet, PT-NBCe1-A/B KO mice had severe metabolic acidosis, yet urinary ammonia excretion was not changed significantly. PT-NBCe1-A/B KO decreased expression of phosphate-dependent glutaminase (PDG) and phospho­enol­pyruvate carboxy­kinase (PEPCK) and increased expression of glutamine synthetase (GS), an ammonia recycling enzyme, in PT in both the cortex and OM. Exogenous acid-loading increased ammonia excretion in control mice, but PT-NBCe1-A/B KO prevented any increase. PT-NBCe1-A/B KO significantly blunted acid loading-induced changes in PDG, PEPCK, and GS expression in the proximal tubule in both the cortex and OM. We conclude that NBCe1-B, at least in the presence of NBCe1-A deletion, contributes to proximal tubule ammonia metabolism in the OM and thereby to systemic acid-base regulation.


2002 ◽  
Vol 68 (11) ◽  
pp. 5737-5740 ◽  
Author(s):  
Ariel Maoz ◽  
Ralf Mayr ◽  
Geraldine Bresolin ◽  
Klaus Neuhaus ◽  
Kevin P. Francis ◽  
...  

ABSTRACT Bioluminescent mutants of Yersinia enterocolitica were generated by transposon mutagenesis using a promoterless, complete lux operon (luxCDABE) derived from Photorhabdus luminescens, and their production of light in the cheese environment was monitored. Mutant B94, which had the lux cassette inserted into an open reading frame of unknown function was used for direct monitoring of Y. enterocolitica cells on cheeses stored at 10°C by quantifying bioluminescence using a photon-counting, intensified charge-coupled device camera. The detection limit on cheese was 200 CFU/cm2. Bioluminescence of the reporter mutant was significantly regulated by its environment (NaCl, temperature, and cheese), as well as by growth phase, via the promoter the lux operon had acquired upon transposition. At low temperatures, mutant B94 did not exhibit the often-reported decrease of photon emission in older cells. It was not necessary to include either antibiotics or aldehyde in the food matrix in order to gain quantitative, reproducible bioluminescence data. As far as we know, this is the first time a pathogen has been monitored in situ, in real time, in a “real-product” status, and at a low temperature.


Sign in / Sign up

Export Citation Format

Share Document