Chronic l-arginine administration increases oxidative and nitrosative stress in rat hyperoxaluric kidneys and excessive crystal deposition

2008 ◽  
Vol 295 (2) ◽  
pp. F388-F396 ◽  
Author(s):  
Ho-Shiang Huang ◽  
Ming-Chieh Ma ◽  
Jun Chen

Hyperoxaluric kidneys show an impaired diuretic response to acute infusion of l-arginine. In this study, we examined the chronic effect of l-arginine supplementation on CaOx crystal formation in hyperoxaluric rat kidneys. Eight groups were tested: control (received drinking water), L group (received l-arginine, 0.6%), LN group [received NG-nitro-l-arginine methyl ester (l-NAME, 10 mg/kg)], L + LN group (received l-arginine + l-NAME), HP group [received hydroxyl-l-proline (HP, 5%) mixed with chow to induce hyperoxaluria], L + HP group (received HP + l-arginine), HP + LN group, and L + HP + LN group. The duration was 42 days, and each group had eight animals. Urinary biochemistry and renal CaOx amounts were measured, as well as renal expressions of nitric oxide synthase (NOS) isoforms and NAD(P)H oxidase. The distribution of inducible NOS (iNOS), NAD(P)H oxidase, ED1-positive cells, and nitrotyrosine was examined by immunohistochemical and immunofluorescence studies, whereas superoxide production from the kidneys was examined by fluorescence spectrometric assay. Compared with the HP group, the L + HP group had excessive CaOx crystal accumulation and enhanced endothelial NOS (eNOS), iNOS, and NAD(P)H oxidase protein expression in the kidney. Urinary excretion of nitrotyrosine was markedly increased. Increased superoxide formation in the L + HP kidney was derived from NAD(P)H oxidase and uncoupled eNOS, and increased nitrotyrosine formation might derive from iNOS and ED1-positive cells that gathered around the CaOx crystals. l-NAME cotreatment (L + HP + LN group) reduced renal oxidative nitrosative stress and tubular damage, which were induced by L + HP. The results showed that chronic l-arginine treatment to the hyperoxaluric kidney with massive CaOx crystal deposition may have a toxic effect by enhancing intrarenal oxidative and nitrosative stress.

2007 ◽  
Vol 293 (5) ◽  
pp. F1691-F1698 ◽  
Author(s):  
Cristino Cruz ◽  
Ricardo Correa-Rotter ◽  
Dolores Javier Sánchez-González ◽  
Rogelio Hernández-Pando ◽  
Perla D. Maldonado ◽  
...  

Progressive renal damage and hypertension are associated with oxidative and nitrosative stress. On the other hand, S-allylcysteine (SAC), the most abundant organosulfur compound in aged garlic extract (AG), has antioxidant properties. The effects of SAC and AG on blood pressure, renal damage, and oxidative and nitrosative stress were studied in five-sixths nephrectomized rats treated with SAC (200 mg/kg ip) and AG (1.2 ml/kg ip) every other day for 30 days. Proteinuria and serum creatinine and blood urea nitrogen concentrations were measured on days 0, 5, 10, 15, and 30, and systolic blood pressure was recorded on days 0, 15, and 30. The degree of glomerulosclerosis and tubulointerstitial damage, the immunostaining for inducible nitric oxide synthase, 3-nitrotyrosine, poly(ADP-ribose), and the subunits of NADPH oxidase p22phox and gp91phox, and the activity of SOD were determined on day 30. SAC and AG reduced hypertension, renal damage, and the abundance of inducible nitric oxide synthase, 3-nitrotyrosine, poly(ADP-ribose), p22phox, and gp91phox and increased SOD activity. Our data suggest that the antihypertensive and renoprotective effects of SAC and AG are associated with their antioxidant properties and that they may be used to ameliorate hypertension and delay the progression of renal damage.


2001 ◽  
Vol 281 (5) ◽  
pp. F948-F957 ◽  
Author(s):  
Eisei Noiri ◽  
Akihide Nakao ◽  
Koji Uchida ◽  
Hirokazu Tsukahara ◽  
Minoru Ohno ◽  
...  

First Published July 12, 2001; 10.1152/ajprenal.0071.2001.—Generation of reactive oxygen species and nitric oxide in hypoxia-reperfusion injury may form a cytotoxic metabolite, peroxynitrite, which is capable of causing lipid peroxidation and DNA damage. This study was designed to examine the contribution of oxidative and nitrosative stress to the renal damage in ischemic acute renal failure (iARF). iARF was initiated in rats by 45-min renal artery clamping. This resulted in lipid peroxidation, DNA damage, and nitrotyrosine modification confirmed both by Western and immunohistochemical analyses. Three groups of animals were randomly treated with an inhibitor of inducible nitric oxide synthase (NOS),l- N 6-(1-iminoethyl)lysine (l-Nil), cell-permeable lecithinized superoxide dismutase (SOD), or both. Each treatment resulted in amelioration of renal dysfunction, as well as reduced nitrotyrosine formation, lipid peroxidation, and DNA damage, thus suggesting that peroxynitrite rather than superoxide anion is responsible for lipid peroxidation and DNA damage. Therefore, in a separate series of experiments, a scavenger of peroxynitrite, ebselen, was administered before the reperfusion period. This treatment resulted in a comparable degree of amelioration of iARF. In conclusion, the present study provides the first attempt to elucidate the role of peroxynitrite in initiation of the cascade of lipid peroxidation and DNA damage to ischemic kidneys. The results demonstrate that l-Nil , lecithinized SOD, and ebselen treatments improve renal function due to their suppression of peroxynitrite production or its scavenging, consequently preventing lipid peroxidation and oxidative DNA damage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiuyue Ma ◽  
Melissa Grigorescu ◽  
Adrian Schreiber ◽  
Ralph Kettritz ◽  
Maja Lindenmeyer ◽  
...  

Calcium oxalate (CaOx) crystal formation, aggregation and growth is a common cause of kidney stone disease and nephrocalcinosis-related chronic kidney disease (CKD). Genetically modified mouse strains are frequently used as an experimental tool in this context but observed phenotypes may also relate to the genetic background or intestinal microbiota. We hypothesized that the genetic background or intestinal microbiota of mice determine CaOx crystal deposition and thus the outcome of nephrocalcinosis. Indeed, Casp1-/-, Cybb-/- or Casp1-/-/Cybb-/- knockout mice on a 129/C57BL/6J (B6J) background that were fed an oxalate-rich diet for 14 days did neither encounter intrarenal CaOx crystal deposits nor nephrocalcinosis-related CKD. To test our assumption, we fed C57BL/6N (B6N), 129, B6J and Balb/c mice an oxalate-rich diet for 14 days. Only B6N mice displayed CaOx crystal deposits and developed CKD associated with tubular injury, inflammation and interstitial fibrosis. Intrarenal mRNA expression profiling of 64 known nephrocalcinosis-related genes revealed that healthy B6N mice had lower mRNA levels of uromodulin (Umod) compared to the other three strains. Feeding an oxalate-rich diet caused an increase in uromodulin protein expression and CaOx crystal deposition in the kidney as well as in urinary uromodulin excretion in B6N mice but not 129, B6J and Balb/c mice. However, backcrossing 129 mice on a B6N background resulted in a gradual increase in CaOx crystal deposits from F2 to F7, of which all B6N/129 mice from the 7th generation developed CaOx-related nephropathy similar to B6N mice. Co-housing experiments tested for a putative role of the intestinal microbiota but B6N co-housed with 129 mice or B6N/129 (3rd and 6th generation) mice did not affect nephrocalcinosis. In summary, genetic background but not the intestinal microbiome account for strain-specific crystal formation and, the levels of uromodulin secretion may contribute to this phenomenon. Our results imply that only littermate controls of the identical genetic background strain are appropriate when performing knockout mouse studies in this context, while co-housing is optional.


2009 ◽  
Vol 296 (1) ◽  
pp. F34-F45 ◽  
Author(s):  
Ho-Shiang Huang ◽  
Ming-Chieh Ma ◽  
Jun Chen

Vitamin E was previously reported to reduce calcium oxalate (CaOx) crystal formation. This study explored whether vitamin E deficiency affects intrarenal oxidative stress and accelerates crystal deposition in hyperoxaluria. The control (C) group of rats received a standard diet and drinking water, while the experimental groups received 0.75% ethylene glycol (EG) in drinking water for 42 days. Of the latter, one group received a standard diet (EG group), one received a low-vitamin E (LE) diet (EG+LE group), and the last received an LE diet with vitamin E supplement (4 mg) (EG+LE+E group). The C+LE and C+LE+E groups were the specific controls for the last two experimental groups, respectively. In a separate experiment, EG and EG+LE rats were studied on days 3–42 to examine the temporal relationship between oxidative change and crystal formation. Urinary biochemistry and activity/levels of antioxidative and oxidative enzymes in glomeruli and tubulointerstitial specimens (TIS) were examined. In EG rats, CaOx crystal accumulation was associated with low antioxidative enzyme activity in TIS and with increased oxidative enzyme expression in glomeruli. In the EG+LE group, marked changes in antioxidative and oxidative enzyme levels were seen and correlated with massive CaOx deposition and tubular damage. The increased oxidative stress seen with EG+LE treatment was largely reversed by vitamin E supplementation. A temporal study showed that decrease in antioxidative defense and increased free radical formation in the EG+LE group occurred before crystal deposition. This study shows that low vitamin E disrupts the redox balance and causes cell death, thereby favoring crystal formation.


2010 ◽  
Vol 299 (5) ◽  
pp. R1387-R1395 ◽  
Author(s):  
Francisca Rodríguez ◽  
Susana Nieto-Cerón ◽  
Francisco J. Fenoy ◽  
Bernardo López ◽  
Isabel Hernández ◽  
...  

Females. suffer a less severe ischemic acute renal failure than males, apparently because of higher nitric oxide (NO) bioavailability and/or lower levels of oxidative stress. Because the renal ischemic injury is associated with outer medullary (OM) endothelial dysfunction, the present study evaluated sex differences in OM changes of NO and peroxynitrite levels (by differential pulse voltammetry and amperometry, respectively) during 45 min of ischemia and 60 min of reperfusion in anesthetized Sprague-Dawley rats. Endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) protein expression and their phosphorylated forms [peNOS(Ser1177) and pnNOS(Ser1417)], 3-nitrotyrosine, reduced sulfhydryl groups (-SH), and glomerular filtration rate (GFR) were also determined. No sex differences were observed in monomeric eNOS and nNOS expression, NO, or 3-nitrotyrosine levels in nonischemic kidneys, but renal -SH content was higher in females. Ischemia increased dimeric/monomeric eNOS and nNOS ratio more in females, but the dimeric phosphorylated peNOS(Ser1177) and pnNOS(Ser1417) forms rose similarly in both sexes, indicating no sex differences in nitric oxide synthase activation. However, NO levels increased more in females than in males (6,406.0 ± 742.5 and 4,058.2 ± 272.35 nmol/l respectively, P < 0.05), together with a lower increase in peroxynitrite current (5.5 ± 0.7 vs. 12.7 ± 1.5 nA, P < 0.05) and 3-nitrotyrosine concentration, (28.7 ± 3.7 vs. 48.7 ± 3.7 nmol/mg protein, P < 0.05) in females than in males and a better preserved GFR after ischemia in females than in males (689.7 ± 135.0 and 221.4 ± 52.5 μl·min−1·g kidney wt−1, P < 0.01). Pretreatment with the antioxidants N-acetyl-l-cysteine or ebselen abolished sex differences in peroxynitrite, nitrotyrosine, and GFR, suggesting that a greater oxidative and nitrosative stress worsens renal damage in males.


2018 ◽  
Vol 48 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Paulina Wigner ◽  
Piotr Czarny ◽  
Ewelina Synowiec ◽  
Micha� Bijak ◽  
Katarzyna Białek ◽  
...  

AbstractThe dominating hypothesis among numerous hypotheses explaining the pathogenesis of depressive disorders (DD) is the one involving oxidative and nitrosative stress. In this study, we examined the association between single-nucleotide polymorphisms of the genes encoding SOD2 (superoxide dismutase 2), CAT (catalase), GPx4 (glutathione peroxidase 4), NOS1 (nitric oxide synthase 1), NOS2 (nitric oxide synthase 2), and the development of depressive disorders. Our study was carried out on the DNA isolated from peripheral blood collected from 281 depressed patients and 229 controls. Using TaqMan probes, we genotyped the following six polymorphisms: c.47T > C (p.Val16Ala) (rs4880) in SOD2, c.-89A > T (rs7943316) in CAT, c.660T > C (rs713041) in GPx4, c.-420-34221G > A (rs1879417) in NOS1, c.1823C > T (p.Ser608Leu) (rs2297518), and c.-227G > C (rs10459953) in NOS2. We found that the T/T genotype of the c.47T > C polymorphism was linked with an increased risk of depression. Moreover, the T/T genotype and T allele of c.660T > C increased the risk of DD occurrence, while the heterozygote and C allele decreased this risk. On the other hand, we discovered that the A/A genotype of c.-89A > T SNP was associated with a reduced risk of DD, while the A/T genotype increased this risk. We did not find any correlation between the genotypes/alleles of c.-420-34221G > A, c.1823C > T, and c.-227G > C, and the occurrence of DD. In addition, gene-gene and haplotype analyses revealed that combined genotypes and haplotypes were connected with the disease. Moreover, we found that sex influenced the impact of some SNPs on the risk of depression. Concluding, the studied polymorphisms of SOD2, CAT and GPx4 may modulate the risk of depression. These results support the hypothesis that oxidative and nitrosative stresses are involved in the pathogenesis of depressive disorders.


2009 ◽  
Vol 296 (5) ◽  
pp. F1080-F1087 ◽  
Author(s):  
Yan Li ◽  
Kenneth E. McMartin

Ethylene glycol (EG)-induced hyperoxaluria is the most commonly employed experimental regimen as an animal model of calcium oxalate (CaOx) stone formation. The variant sensitivity to CaOx among different rat strains has not been fully explored, although the Wistar rat is known to accumulate more CaOx in kidney tissue after low-dose EG exposure than in the Fischer 344 (F344) rats. Supersaturation of CaOx in tubular fluid contributes to the amount of CaOx crystal formation in the kidney. We hypothesized that the urinary supersaturation of CaOx in Wistar rats is higher than that of F344 rats, thereby allowing for greater CaOx crystal deposition in the Wistar rat. Age-matched male Wistar and F344 rats were treated with 0.75% EG or drinking water for 8 wk. Twenty-four-hour urine was collected at 0, 2, 4, 6, and 8 wk for analysis of key electrolytes to calculate the CaOx supersaturation. Plasma oxalate level was also measured. Our data confirmed the different sensitivity to renal toxicity from EG between the two rat strains (Wistar > F344). After EG treatment, the plasma oxalate level and urine oxalate excretion were markedly greater in the Wistar rats than in the F344 rats, while urine calcium was slightly decreased in Wistars. Thus, the CaOx supersaturation in urine of Wistar rats was higher, which led to a greater crystal deposition in kidney in Wistar rats. These studies suggest that during EG treatment, changes in urine electrolytes and in CaOx supersaturation occur to a greater extent in the Wistar rat, in agreement with its greater sensitivity to EG toxicity.


2017 ◽  
Vol 312 (4) ◽  
pp. C418-C427 ◽  
Author(s):  
Gauri Akolkar ◽  
Ashim K. Bagchi ◽  
Prathapan Ayyappan ◽  
Davinder S. Jassal ◽  
Pawan K. Singal

An increase in oxidative stress is suggested to be the main cause in Doxorubicin (Dox)–induced cardiotoxicity. However, there is now evidence that activation of inducible nitric oxide synthase (iNOS) and nitrosative stress are also involved. The role of vitamin C (Vit C) in the regulation of nitric oxide synthase (NOS) and reduction of nitrosative stress in Dox-induced cardiotoxicity is unknown. The present study investigated the effects of Vit C in the mitigation of Dox-induced changes in the levels of nitric oxide (NO), NOS activity, protein expression of NOS isoforms, and nitrosative stress as well as cytokines TNF-α and IL-10 in isolated cardiomyocytes. Cardiomyocytes isolated from adult Sprague-Dawley rats were segregated into four groups: 1) control, 2) Vit C (25 µM), 3) Dox (10 µM), and 4) Vit C + Dox. Dox caused a significant increase in the generation of superoxide radical (O2·−), peroxynitrite, and NO, and these effects of Dox were blunted by Vit C. Dox increased the expression of iNOS and altered protein expression as well as activation of endothelial NOS (eNOS). These changes were prevented by Vit C. Dox induced an increase in the ratio of monomeric/dimeric eNOS, promoting the production of O2·−, which was prevented by Vit C by increasing the stability of the dimeric form of eNOS. Vit C protected against the Dox-induced increase in TNFα as well as a reduction in IL-10. These results suggest that Vit C provides cardioprotection by reducing oxidative/nitrosative stress and inflammation via a modulation of Dox-induced increase in the NO levels and NOS activity.


Sign in / Sign up

Export Citation Format

Share Document