scholarly journals Array profiling reveals contribution of Cthrc1 to growth of the denervated rat urinary bladder

2018 ◽  
Vol 314 (5) ◽  
pp. F893-F905 ◽  
Author(s):  
Baoyi Zhu ◽  
Mari Ekman ◽  
Daniel Svensson ◽  
Jessica M. Lindvall ◽  
Bengt-Olof Nilsson ◽  
...  

Bladder denervation and bladder outlet obstruction are urological conditions that cause bladder growth. Transcriptomic surveys in outlet obstruction have identified differentially expressed genes, but similar studies following denervation have not been done. This was addressed using a rat model in which the pelvic ganglia were cryo-ablated followed by bladder microarray analyses. At 10 days following denervation, bladder weight had increased 5.6-fold, and 2,890 mRNAs and 135 micro-RNAs (miRNAs) were differentially expressed. Comparison with array data from obstructed bladders demonstrated overlap between the conditions, and 10% of mRNAs changed significantly and in the same direction. Many mRNAs, including collagen triple helix repeat containing 1 ( Cthrc1), Prc1, Plod2, and Dkk3, and miRNAs, such as miR-212 and miR-29, resided in the shared signature. Discordantly regulated transcripts in the two models were rare, making up for <0.07% of all changes, and the gene products in this category localized to the urothelium of normal bladders. These transcripts may potentially be used to diagnose sensory denervation. Western blotting demonstrated directionally consistent changes at the protein level, with increases of, e.g., Cthrc1, Prc1, Plod2, and Dkk3. We chose Cthrc1 for further studies and found that Cthrc1 was induced in the smooth muscle cell (SMC) layer following denervation. TGF-β1 stimulation and miR-30d-5p inhibition increased Cthrc1 in bladder SMCs, and knockdown and overexpression of Cthrc1 reduced and increased SMC proliferation. This work defines common and distinguishing features of bladder denervation and obstruction and suggests a role for Cthrc1 in bladder growth following denervation.

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2219
Author(s):  
Yuan-Shuo Hsueh ◽  
Hui-Hua Chang ◽  
Shun-Yao Ko ◽  
Yi-Pai Lin ◽  
Wei-Yu Lin

Chronic partial bladder outlet obstruction (PBOO) is a prevalent clinical problem that may result from multiple etiologies. PBOO may be a secondary condition to various anatomical and functional abnormalities. Bladder fibrosis is the worst outcome of PBOO. However, gene alterations and the mechanism of fibrosis development after PBOO onset are not clear. Therefore, we aimed to investigate gene expression alterations during chronic PBOO. A rat model of PBOO was established and validated by a significant increase in rat bladder weight. The bladder samples were further analyzed by microarray, and differentially expressed genes (DEGs) that are more related to PBOO compared with the control genes were selected. The data showed that 16 significantly upregulated mRNAs and 3 significantly downregulated mRNAs are involved in fibrosis. Moreover, 13 significantly upregulated mRNAs and 12 significantly downregulated mRNAs are related to TGFB signaling. Twenty-two significantly upregulated mRNAs and nine significantly downregulated mRNAs are related to the extracellular matrix. The genes with differential expressions greater than four-fold included Grem1, Thbs1, Col8a1, Itga5, Tnc, Lox, Timp1, Col4a1, Col4a2, Bhlhe40, Itga1, Tgfb3, and Gadd45b. The gene with a differential expression less than a quarter-fold was Thbs2. These findings show the potential roles of these genes in the physiology of PBOO.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samina Shabbir ◽  
Prerona Boruah ◽  
Lingli Xie ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Mohsin Nawaz ◽  
...  

AbstractOvary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.


2019 ◽  
Vol 26 (11) ◽  
pp. 1485-1492
Author(s):  
Xiaochun Yi ◽  
Jie Zhang ◽  
Huixiang Liu ◽  
Tianxia Yi ◽  
Yuhua Ou ◽  
...  

The adverse clinical result and poor treatment outcome in recurrent spontaneous abortion (RSA) make it necessary to understand the pathogenic mechanism. The mating combination CBA/J × DBA/2 has been widely used as an abortion-prone model compared to DBA/2-mated CBA/J mice. Here, we used RNA-seq to get a comprehensive catalogue of genes differentially expressed between survival placenta in abortion-prone model and control. Five hundred twenty-four differentially expressed genes were obtained followed by clustering analysis, Gene Ontology analysis, and pathway analysis. We paid more attention to immune-related genes namely “immune response” and “immune system process” including 33 downregulated genes and 28 upregulated genes. Twenty-one genes contribute to suppressing immune system and 7 are against it. Six genes were validated by reverse transcription-polymerase chain reaction, namely Ccr1l1, Tlr4, Tgf-β1, Tyro3, Gzmb, and Il-1β. Furthermore, Tlr4, Tgf-β1, and Il-1β were analyzed by Western blot. Such immune profile gives us a better understanding of the complicated immune processing in RSA and immunosuppression can rescue pregnancy loss.


2018 ◽  
Vol 50 (6) ◽  
pp. 2071-2085 ◽  
Author(s):  
Wentao Hu ◽  
Weiwei Pei ◽  
Lin Zhu ◽  
Jing Nie ◽  
Hailong Pei ◽  
...  

Background/Aims: TGF-β1 mediated radiation-induced bystander effects (RIBE) have been linked with malignant transformation and tumorigenesis. However, the underlying mechanisms are not fully understood. Methods: To reveal new molecules of regulatory functions in this process, lncRNA microarray was performed to profile both lncRNA and mRNA expression patterns in human lung bronchial epithelial BEAS-2B cells treated with TGF-β1 at a concentration measured in the medium conditioned by directly irradiated BEAS-2B cells. The potential functions of the differentially expressed lncRNAs were predicted by GO and KEGG pathway analyses of their co-expressed mRNAs. Cis- and trans-regulation of the lncRNAs were analyzed and the interaction networks were constructed using Cytoscape. qRT-PCR was conducted to validate the results of microarray profiling. CCK-8 assay was employed for functional validation of 3 identified lncRNAs. Results: 224 lncRNAs were found to be dysregulated, among which 6 lncRNAs were chosen for expression validation by qRT-PCR assay. Pathway analyses showed that differentially expressed lncRNAs are highly correlated with cell proliferation, transformation, migration, etc. Trans-regulation analyses showed that the differentially expressed lncRNAs most likely participate in the pathways regulated by four transcriptional factors, FOS, STAT3, RAD21 and E2F1, which have been identified to be involved in the modulation of oncogenic transformation, cell cycle progression, genomic instability, etc. lnc-THEMIS-2 and lnc-ITGB6-4, predicted to be regulated by STAT3 and E2F1 respectively, were found to rescue the decrease of cell viability induced by TGF-β1 treatment. Conclusion: Our findings suggest that the differentially expressed lncRNAs induced by TGF-β1 play crucial roles in the oncogenic transformation and tumorigenesis, which provide a better understanding of the underlying mechanisms related to tumorigensis induced by LD/LDR radiations.


Author(s):  
Baoyi Zhu ◽  
Zhanfang Kang ◽  
Sihua Zhu ◽  
Yuying Zhang ◽  
Xiangmao Lai ◽  
...  

Bladder outlet obstruction (BOO) is a common urologic disease associated with poorly understood molecular mechanisms. This study aimed to investigate the possible involvements of circRNAs (circular RNAs) and circRNA-encoded proteins in BOO development. The rat BOO model was established by the partial bladder outlet obstruction surgery. Differential expression of circRNA and protein profiles were characterized by deep RNA sequencing and iTRAQ quantitative proteomics respectively. Novel proteins encoded by circRNAs were predicted through ORF (open reading frame) selection using the GETORF software and verified by the mass spectrometry in proteomics, combined with the validation of their expressional alterations by quantitative RT-PCR. Totally 3,051 circRNAs were differentially expressed in bladder tissues of rat BOO model with widespread genomic distributions, including 1,414 up-regulated, and 1,637 down-regulated circRNAs. Our following quantitative proteomics revealed significant changes of 85 proteins in rat BOO model, which were enriched in multiple biological processes and signaling pathways such as the PPAR and Wnt pathways. Among them, 21 differentially expressed proteins were predicted to be encoded by circRNAs and showed consistent circRNA and protein levels in rat BOO model. The expression levels of five protein-encoding circRNAs were further validated by quantitative RT-PCR and mass spectrometry. The circRNA and protein profiles were substantially altered in rat BOO model, with great expressional changes of circRNA-encoded novel proteins.


1990 ◽  
Vol 258 (5) ◽  
pp. C923-C932 ◽  
Author(s):  
A. Arner ◽  
U. Malmqvist ◽  
B. Uvelius

Ten days of urinary outlet obstruction in the rat induced a threefold increase in bladder weight. Active force of control and hypertrophic bladder muscle strips was measured at varying PO2 levels after high-K+, carbachol, or electrical field stimulation. Highest force output was obtained with carbachol. Force per muscle area was lower in the hypertrophic muscles. The basal rates of oxygen consumption and lactate formation were similar in the two groups. The metabolic tension cost (ATP turnover/active force) was similar in the two groups for activation with high K+ and carbachol. In anoxia the active force decreased, but this was less pronounced in the hypertrophied muscle. Hypertrophied muscle could, in contrast to the controls, maintain a sustained K+ contracture in anoxia. Basal metabolic rates and tension cost were markedly reduced in anoxia for both groups. The lower force per area with unaltered tension cost, in hypertrophic muscles under all experimental conditions, may reflect unaltered intrinsic properties of the contractile system, although the amount of contractile material has decreased relative to cell volume. The increased resistance to anoxia may reflect a metabolic adaptation to impaired oxygen supply to the hypertrophied tissue.


Sign in / Sign up

Export Citation Format

Share Document